

Geospatial trends 2023: Opportunities for data.europa.eu

Unin. europo academy 8 September 2023 10.00 — 11.30 CET

Rules of the game

The webinar will be recorded

For questions, please use the ClickMeeting chat.

Please reserve 3 min after the webinar to help us improve by filling in our feedback form

Introduction

Inmaculada Farfan Velasco Project Manager, Data.europa.eu, Publications Office of the EU

Antje Kügeler *con terra* Consultant Spatial Data Infrastructures

Dr. Christopher Britsch con terra GeoAl Lead con terra Technologies

Dr. Simon Jirka 52°North Managing Director

Dr. Benedikt Gräler 52°North Managing Director

2

10.00 – 10.05 Welcome and introduction

10.05 – 10.15 Warm-up: What current trends regarding geospatial topics come to mind?

10.15 – 10.45 GeoAl- Artificial Intelligence for geospatial insights

- 10.45 10.55 Q&A
- 11.20 11.25 Summary and next steps
- 11.25 11.30 Closing

doto. europo academy

Ask your questions in sli.do using the code geospatial2023

Goal of this Webinar

- Explain a current trend in the geospatial community
- Discuss:
 - What opportunities for data.europa.eu might arise from these trend?
 - How can data.europa.eu benefit from and support the new trend?

data.europa.eu

- Single access point to open data in Europe
- Includes metadata from 179 catalogues
 - Open Data Portals and Geoportals
- from 36 countries
- Descriptions of more than 1.5 Mio. datasets
- Strategic objective is to improve accessibility of open data

doto. europo academy

geospatial data

- Data often has a *location* component
- Geodata contains information on properties that are linked to a position on earth
- The geospatial context will often uncover interesting revelations
- Information on the *where* often makes data more meaningful

GML, KML, ArcGIS Map P ArcGIS Map Service, WFS	revi 5, W	/
✓ KML	789	*
 ArcGIS Map Preview 	789	
ArcGIS Map Service	789	
✓ WFS	789	
VMS	789	ľ
		w.

What's a trend?

A trend is a "general development or change in a situation or in the way that people are behaving"

(quoted from Cambridge Dictionary https://dictionary.cambridge.org/dictionary/english/trend)

Warm-up

What current trends regarding geospatial topics come to mind?

doto. europo academy

Trends in working with geospatial data

Trend to be discussed today: GeoAI – Artificial Intelligence for geospatial insights

- Introduction to GeoAl
- Examples of using GeoAl

GeoAl - Definition

GeoAl is a Machine Learning technology, which enables the caption and analysis of complex patterns and structures in (geospatial) data.

Setup of a "typical" GeoAl-Project

KINoPro

- Research Project of University of Dresden and con terra
 - Data from state forestries Brandenburg and Saxony
- Climate Change Influence
 - Trees struggling with dry and hot weather
 - Forest pests (Black Arches moths) adapt faster than plants
 →Irregular population growth/appearence
- Forestry personnel needs to be managed more efficiently
 - New prediction models are necessary

Funded by

Federal Ministry of Food and Agriculture

KINoPro - Approach and Overview

Validation and survey for additional parameters

KINoPro - Parameters

- Target Variable:
 - Moth Count per Year
- Additional Information:
 - Land Cover Classification
 - Altitude
 - Slope
 - Trap Alignment

Unto. europo academy

KINoPro - Output

Anomaly Detection in Cellular Towers

- Cellular tower data contains errors/anomalies that are difficult to detect
- Complex Data
 - Large number of parameters, different scaling
- Multidimensional Spectrum
 - "Seeing" Anomalys often impossible
- GeoAl-Solution:
 - Artificial Neural Network detects Anomalys
 - No preset rules needed
 - LSTM layers allow viewing time series

Anomaly Detection in Cellular Towers

Anomaly Detection in Cellular Towers

Detection of Building Areas

- New building areas are interesting for marketing and sales
 - Manual search is ressource and time consuming
 - Information is needed as early as possible
- GeoAI-Model uses only Open Data
 - Copernicus Sentinel-2 Data
 - Building Footprints (open.nrw)
 - DLM (open.nrw)

doto. europo academy

Detection of Building Areas

- Interaction of two models
 - Model 1 detects potential changes
 - Model 2 analyses changes and predicts if the changes are due to building activities
- Models are built on Data from March to May (typical buidling phases)
 - For detection in other phases, new models would need to be trained

- Goal: Reduction of maritime transport emissions by 10% through hydrodynamically optimal ship operation and routing
- Partners
 - Hamburgische Schiffbau-Versuchsanstalt GmbH
 - AVL Deutschland GmbH
 - DSL Entwicklungszentrum für Schiffstechnik und Transportsysteme e.V.
 - Friendship Systems AG
 - Technische Universit
 ät Berlin
 - Technische Universität Hamburg
 - 52°North Spatial Information Research GmbH
 - Universität zu Lübeck
 - Maritimes Zentrum der Hochschule Flensburg
 - Carl Büttner Shipmanagement
 - AVL Software & Functions

MAR DATA is funded by

Federal Ministry for Economic Affairs and Energy

doto. europo academy

• Data demand and sources

- Geodata preparation
 - Intersection of AIS data (ship tracking) with environmental conditions
 - Basis of the ML modelling

- AI-based routing
 - Routing across different cost surfaces
 - Comparison of different algorithms
- Multi-objective optimization problem
- Criteria:
 - Travelled distance and velocity
 - Approximate fuel consumption
 - ETA
- Safety constraints **Joto** europo academy

- Data is a key factor for the success of the project
- Discovery of suitable data sets is critical
- Provision standardised data access interfaces (APIs) and formats massively facilitates data integration --> increased value of the data

- Bridging the gap between domain knowledge and infrastructure
- Partners:
 - FZ Jülich
 - University of Cologne
 - RWTH Aachen
 - University of Bonn
 - Ambrosys GmbH
 - 52°North Spatial Information Research GmbH

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

Challenges

- Access across different data providers
- Support of different analytical infrastructures (local, cloud, high performance cluster)
- Different fields of application
- Storage of trained models
- Versioning of data and models
- E-learning platform for domain experts

- Use cases
 - Wilderness: sensitive concepts for wilderness by classifying Sentinel-2 images into (non-)protected areas
 - **Biogenic emissions:** unsupervised methods in estimating biogenic emissions from Earth Observation
 - Hazard prediction: hazard mapping workflow that incorporates both physicsbased models and machine learning algorithms based on heterogeneous data sources
 - Hydrometeorological extremes: AI methods for merging modelled and reanalysis/observational for quantification of hydrometeorological extremes
 - Cloud variability: self-supervised learning on Meteosat

doto. europo academy

Questions & Answers

Questions?

S Slido - Audience Interaction Mad × +	•
← → C △ ● sli.do	* * 🛽
Apps	» 🔝 Reading
alida	_
SILLO	=
Joining as a participant?	=
Joining as a participant? # geospatial2023	=
Joining as a participant? # geospatial2023 By using Slido you accept our Policy.	= •

doto. europo academy

Discussion

- What opportunities for data.europa.eu might arise from this trend?
- How can data.europa.eu benefit from and support GeoAl?

slido Joining as a participant? # geospatial2023	Apps	» 🗉
Joining as a participant? # geospatial2023 By using Slide you accept our Performent	slido	
# geospatial2023	Joining as a participant?	
By using Slide you accept our Policy	# geospatial2023	
By daing alde yed accept our <u>roney</u>	By using Slido you accept our <u>Policy</u>	

Next steps

• Short report to be published

Link to last year's report: https://data.europa.eu/sites/default/files/course/Geospati al Trends 2022.pdf

• Findings will provide input to further development of data.europa.eu

Thank you!

Geospatial Trends 2022

Opportunities for data.europa.eu from emerging trends in the geospatial community

Stay up-to-date on our **2023 activities!**

Unin. europo academy

Join our next webinars!

doto. europo academy WEBINAR

Open Data Maturity 2022: Diving deeper into the policy dimension

doto. europo academy 29 September 2023

 $10.00 - 11.30 \; \mathrm{CET}$

Sign up for the newsletter: data.europa.eu/newsletter Follow us on social media:

EU_opendata

Publications Office of the European Union

data.europa.eu

Please provide your feedback!

Thank you

