
Simple five level Open Data API evaluation model
Submitted on 06 Nov 2013 by Jarkko Moilanen 

Whatever the selected API management is, we still need tools to evaluate APIs. APIs come in
different flavours; some good, some not too good and a wide variety in between. We need tools to
evaluate APIs or to be more precise - we need to evaluate API providers and communities.

Evaluation frameworks give us tools to quickly give a rating for API and to present the ratings for
developers. Developers (aka API key owners) should be able to vote on APIs. Developers should
also be able to submit bug reports regarding any API. Building a central or distributed API
management solution discussed in previous post, we could also gather bug and feature dialog in the
same platforms. This would make APIs related dialogue more visible and accessible. It would also
remove the need for separate dialogue systems and thus lower the costs. Now, let's get back to the
evaluation model suggestion.

Follow the logic of the deployment scheme for Open Data
I've done an initial 5 step model to "give stars" for APIs. The model follows the familiar logic in
Tim Berners-Lee's 5-star deployment scheme for Open Data below.

http://5stardata.info/Five step Open Data API evaluation model

 

 

Five step Open Data API evaluation model
Each main plane has child items, and each of them can get one point. At present, the maximum score
is asymmetric, i.e. a maximum of 23 points.

http://5stardata.info/
http://5stardata.info/Five


Level 1: All find (4)

From a single source (the portal), are all of the information or links to them available?
Is updated documentation available?
Are there examples of API requests seen as part of the documentation?
Are there examples of the API request returned data?

Level 2: All use (5)

Does it support the use of JSON and/or XML?
Are data license details given through the API?
Are Terms of Use clear and easily accessible?
Does returning data include metadata?
Does authentication exist? Oauth (2), or other?

Level 3: All trust (5)

Is Analytics API public and real/up to date?
Is Error Handling in place and documented?
Does it support queries and use of cache?
Is the background a big ripe entity or a company that is engaged in the development and
maintenance of the API?
Is it available for all (business, communities, individual developers)?

Level 4: All involved (5)

Are API SDK's for one or more of the environment are available?
Are there examples of code in one or more of the programming language?
Is there a growing community (and the location in the network) to consult if needed?
Is there an API Playground for testing and getting familiar with?
Is documentation linked to code examples and back again?

Level 5: All develop (4)

Is code visible/can be cloned?
Can Bugs be reported in a public place and is dialogue public?
Is the API's license known, and does it allow further development and re-use?
Is the API's development roadmap known and is it visible for all (how to develop and at what
stage)?



Evaluation data crowd-sourced

Data which evaluates listed APIs would be crowd-sourced. For example, the developers who
request API keys could be a suitable audience to audit APIs based on the described 5 steps.

To recap the points model: Each step has 4-5 point items. Each item is a claim.

If a claim regarding API at hand is true, it is recorded as green (1 point).
If it's not known whether a claim applies to API, it is recorded as turquoise (0 points).
If a claim does not apply to selected API, it is recorded as red. (0 points) and lastly
If there is no data regarding the claim, it is recorded as gray (0 points).

After a while, when developers have evaluated APIs, data could be automatically transformed into
easy to use graphs or tables such as the below illustration. The colours of each bar could express the
most selected option; the more developers evaluate one item as "green" than "gray", the bar is green.
That way system could use "developer votes" instead of relying on single time data entry.

Of course the model needs to be clarified, but it should at the current form provide a starting point
for building scalable crowd-sourced API evaluation systems. This kind of tool would help in
identifying shortcomings of each API (what to develop next) and it would also help developers in
choosing which API to use.


