
Next steps in open data reuse involving APIs 
Submitted on 07 Oct 2013 by Jarkko Moilanen 

We moved from being a manufacturing based economy, through services to a data or information
based economy and API strategy is a key enabler of that economy. In this emerging economy
information is currency. Cities across the world are opening data for others to consume. Often the
starting point is to provide spreadsheets (files) as open data. Spreadsheets might contain economical
information, statistics and other easy to list information about some geographical area.

In the same time governments are turning towards more open and engaging approaches, for example
by opening easy to use channels for citizens to gain information about decision-making (Ahjo in
Helsinki) and help in maintaining city infrastructure.

The above examples represent the next step in evolution of open data reuse – application
programming interfaces or APIs. API stands for Application Programming Interface. In short, it is
the equivalent of a Graphical User Interface (GUI) for programmers. Users interact with a program
using the GUI, programs “interact” with other programs using the API.

API provides more flexible and application oriented tools to access data. APIs are often needed to
access real-time data, for example bus or train locations, but can also offer views to spreadsheets as
well. The amount of APIs raise in slower pace compared to data dumbs because API development
requires more resources.

Despite the costs, it is expected that APIs will enable the next wave of open data. First wave is still
on-going and refers to open data catalogs established around the world. APIs will take the data reuse
to the next level. Of course rising amount of APIs will raise new issues which need to be tackled.
API providers will need to find answers to questions like:

how your organization manufactures,
provides (distributes) and
consumes APIs.

Often answering to those questions is referred as API strategy. As it was said, building APIs via
conventional supplier chains is often expensive. Another option is to enable community driven API
development. Opening development to community members:

can save money and time.
will boost the amount of open data driven apps in your area and
offer public sector a chance to build services together with community and businesses.
start distributed and open development cycle in your local open data community
result to APIs, apps, ideas, extensions and general positive developer activity around open data.

Open Data APIs and files – different audience
Building APIs will not make data dumps obsolete. Files and APIs can supplement each other. Files
are good for information which are updated relatively rarely, for example bus timetables in some
area. Getting bus locations via spreadsheets would not make much sense, thus APIs are often used
for that purpose. Another difference between files and APIs is the audience. Spreadsheets which
contain information about economical figures in some area are something that we can read and
understand directly from the files. APIs are not the same. They are intended to be used by

http://www.hri.fi/fi/ajankohtaista/open-ahjo-rajapinta-helsingin-asiakirjajarjestelmaan-avautui/
http://www.hri.fi/fi/ajankohtaista/open-ahjo-rajapinta-helsingin-asiakirjajarjestelmaan-avautui/
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Graphical_user_interface
http://opengovernmentdata.org/data/catalogues/


applications, not humans. Of course spreadsheets and other documents can be and often are used by
applications as well, but API outputs rarely make sense to others that developers and applications.

Reasons to pursue API development
There are many advantages to having an API. Here's a few of the reasons discussed briefly.
The API provides a way to add and enhance a program without having to get into the guts of the
program itself. An API allows groups of developers (internal, partners or contract developers)
anywhere in the world to enhance the product with minimal coordination. The advantages go beyond
better architecture of the program’s source code because

It is clear that partnerships can make companies and communities alike stronger by developing
synergies between products and services to each other’s existing clientele. The API can help turn
your competitors into partners by allowing them to build solutions on top of your product’s
functionality. This concept lets partners leverage the existing capabilities of your program and
enhance it by using their expertise and know-how to create new and innovative solutions. This
approach sure beats duplicating the functionality of your base product first.

As you have probably figured out, the API lets one build on top of a product and expands its
capabilities. An API opens up the opportunity for ways to tap into markets and geographies you
would not otherwise have the resources or expertise to get into. The ability to have your product
“countrified” with not just translation but also with features and content relevant to that market can
be a very compelling offering in a new market. An API offers the possibility of creating or
modifying features to suit specific markets and it can also help automate the creation of content
relevant to your market.

Simply put, an API empowers end-users by making their product do things the original developers
did not build into the product. It also lets users customize the product to better fit their needs and
workflow. The real secret is to create features and APIs that are not dead ends, but rather extensible
solutions used to solve more specific or specialized problems with just a little bit of effort.

Eat your own dog food
In application development adding one feature to system might solve developers' problems for
today. But if you provide a man an API; you have solved his problems for a lifetime. Building API
for developers to consume, most likely reduces your system development costs in the long run.
Providing an API is not enough though. Developers need to know how it works, what the methods
return, what is the error management and so on. In other words there has to be uptodate code
examples great documentation, sufficient functionality, some developer support and documentation.
The process takes time to take off but once it does, it is a gift that keeps on giving.

Keep in mind that developers need to trust your API to work now and also in the future. One method
to raise the trust is to follow the motto “eat your own dog food”. The saying refers to using same API
in your own processes, instead of building something else for others to use. Utilize and continually
test your own API. If it is not good enough for you to use, you cannot expect anyone else to use it
either.

APIs come in different flavours
Of course, an API strategy is not a binary decision — to use them or not to use them. There are
public (open to everyone) and private (open only to certified developers or partners) APIs. There are



free APIs (Google’s, for the most part, although they charge under certain circumstances) and flat
fee or revenue-sharing ones (Apple’s, for the most part). There are information and services that you
want to give your ecosystem access to, and those that you probably should keep to yourself. In short,
your organization needs to debate the various elements of an API strategy, and then you need a set
of governance mechanisms to enforce it.

If we intend to build open data ecosystems and subsystems, APIs are the way to do it. Information
shared is value squared! Often governmental organizations do not cheer loudly when they are asked
to build APIs because they are often expensive although in the long run APIs 'pay back'. How to
tackle expenses?

Another option is to enable and engage community driven development. Open Data communities
around the world are filled with talented developers and they represent a pool of resources. You
need to give something to the community and they will come. You need to give them freedom,
access to data source (aka open the data) and if possible a “playground”. Playground refers to tools
and servers in which community has test new ideas and build applications and APIs. Communities
might even build the playgrounds themselves if you provide some resources. Let's take a concrete
example.

Enable community driven development
In some cases systems which contain the information itself are proprietary and thus giving access to
community developers is not possible. This is the situation due to agreements created in the past
when open data was not known inside public sector or other organizations.

Therefore excel files are dumped (and converted to CSV) out of the system. Even enabling that
capability costs money, since public sectors are in vendor lock-in situation. That refers to situation in
which service provider is the only one allowed (or capable of) to create extensions to existing system
in use. But if the data is available as data dumps, it's possible to engage community to define and
build APIs to the data.



In the above sketch, some governmental organization has opened economical data as spreadsheets
(case 1). Without APIs getting that information to each application developed by different
developers would require that every data input method (converter) is coded separately to each
application. Each developer has to dig deep into the spreadsheets and use innovation and
programming skills to obtain needed parts of the information inside the document.

What if one developer creates one converter which is able to read the data and store it to
community-wide shared database? And then the same or some other developer creates a
light-weight API on top of that data. Better yet, the API is put into community server for all to use.
Then all developers could access the spreadsheet information via the API. Of course there are ways
to read data directly from the spreadsheets, but they are often not as fast and efficient as using
databases. One of the advantages of API is that spreadsheet does not need to be downloaded to the
app, application retrieves just the information it needs, nothing more nothing less. In the ideal world
source code for the newly build API is shared via GitHub or alike thus enabling incremental
development.

In case 2 some governmental organization has shared information about staff, wages and so on. If
the same process is applied to case 2 as was in case 1, we could easily have a set of APIs which
offer efficient methods to access information inside spreadsheets. And what would all this cost to
organization that opened the spreadsheets? Most likely much less than ordering system integrated
API from the same supplier that provided to background system to store spreadsheets. In addition,
community driven approach would not affect the workload of the data opener organization.


