EUR-Lex Access to European Union law

Back to EUR-Lex homepage

This document is an excerpt from the EUR-Lex website

Document 32021L1226

Commission Delegated Directive (EU) 2021/1226 of 21 December 2020 amending, for the purposes of adapting to scientific and technical progress, Annex II to Directive 2002/49/EC of the European Parliament and of the Council as regards common noise assessment methods (Text with EEA relevance)

C/2020/9101

OJ L 269, 28.7.2021, p. 65–142 (BG, ES, CS, DA, DE, ET, EL, EN, FR, GA, HR, IT, LV, LT, HU, MT, NL, PL, PT, RO, SK, SL, FI, SV)

Legal status of the document In force

ELI: http://data.europa.eu/eli/dir_del/2021/1226/oj

28.7.2021   

EN

Official Journal of the European Union

L 269/65


COMMISSION DELEGATED DIRECTIVE (EU) 2021/1226

of 21 December 2020

amending, for the purposes of adapting to scientific and technical progress, Annex II to Directive 2002/49/EC of the European Parliament and of the Council as regards common noise assessment methods

(Text with EEA relevance)

THE EUROPEAN COMMISSION,

Having regard to the Treaty on the Functioning of the European Union,

Having regard to Directive 2002/49/EC of the European Parliament and of the Council of 25 June 2002 relating to the assessment and management of environmental noise (1), and in particular Article 12 thereof,

Whereas:

(1)

Annex II to Directive 2002/49/EC sets methods of assessment common to the Member States, to be used for the information on environmental noise and its effects on health, in particular for noise mappings, and to adopt action plans based upon noise mapping results. This annex needs to be adapted to technical and scientific progress.

(2)

From 2016 to 2020, the Commission cooperated with technical and scientific experts of the Member States to assess which adaptations were needed taking into account the technical and scientific advances in the calculation of environmental noise. This process was carried out in close consultation with the Noise Expert Group, composed of Member States, the European Parliament, industry stakeholders, public authorities of Member States, NGOs, citizens and academia.

(3)

The Annex to this Delegated Directive sets out the necessary adaptations of the common assessment methods consisting of clarification of formulas to calculate the propagation of noise, adaptation of tables to the latest knowledge and improvements in the description of the steps of the calculations. This affects road noise, railway noise, industrial noise and aircraft noise calculations. Member States are required to use these methods at the latest from 31 December 2021.

(4)

Annex II to Directive 2002/49/EC should therefore be amended accordingly.

(5)

The measures provided for in this Directive are in accordance with the opinion of the Noise Expert Group consulted on 12 October 2020,

HAS ADOPTED THIS DIRECTIVE:

Article 1

Annex II to Directive 2002/49/EC is amended in accordance with the Annex to this Directive.

Article 2

1.   Member States shall bring into force the laws, regulations and administrative provisions necessary to comply with this Directive by 31 December 2021 at the latest. They shall immediately communicate the text of those measures to the Commission.

When Member States adopt those measures, they shall contain a reference to this Directive or be accompanied by such a reference on the occasion of their official publication. Member States shall determine how such reference is to be made.

2.   Member States shall communicate to the Commission the text of the main provisions of national law which they adopt in the field covered by this Directive.

Article 3

This Directive shall enter into force on the day following that of its publication in the Official Journal of the European Union.

Article 4

This Directive is addressed to the Member States.

Done at Brussels, 21 December 2020.

For the Commission

The President

Ursula VON DER LEYEN


(1)   OJ L 189, 18.7.2002, p. 12.


ANNEX

Annex II is amended as follows:

(1)

In Section 2.1.1, the second paragraph is replaced by the following:

‘Calculations are performed in octave bands for road traffic, railway traffic and industrial noise, except for the railway noise source sound power, which uses third octave bands. For road traffic, railway traffic and industrial noise, based on these octave band results, the A-weighted long-term average sound level for the day, evening and night period, as defined in Annex I and referred to in Article 5 of Directive 2002/49/EC, is computed by the method described in Sections 2.1.2, 2.2, 2.3, 2.4 and 2.5. For roads and railway traffic in agglomerations, the A-weighted long-term average sound level is determined by the contribution from road and railway segments therein, including major roads and major railways.’.

(2)

Section 2.2.1 is amended as follows:

(a)

in the paragraph under the heading ‘Number and Position of Equivalent Sound Sources’, the first sub-paragraph is replaced by the following:

‘In this model, each vehicle (category 1, 2, 3, 4 and 5) is represented by one single point source radiating uniformly. The first reflection on the road surface is treated implicitly. As depicted in Figure [2.2.a], this point source is placed 0,05 m above the road surface.’;

(b)

in the paragraph under the heading ‘Sound Power Emission’, the last sub-paragraph under the heading ‘Traffic Flow’ is replaced by the following:

‘The speed vm is a representative speed per vehicle category: in most cases the lower of the maximum legal speed for the section of road and the maximum legal speed for the vehicle category.’;

(c)

in the paragraph under the heading ‘Sound Power Emission’, the first sub-paragraph under the heading ‘Individual vehicle’ is replaced by the following:

‘In the traffic flow, all vehicles of category m are assumed to drive at the same speed, i.e. vm ’.

(3)

Table 2.3.b is amended as follows:

(a)

in the third row, fourth column (called ‘3’), the text is replaced by the following:

‘Represents an indication of the “dynamic” stiffness’;

(b)

in the sixth row, fourth column (called ‘3’), the text is replaced by the following:

H

Hard (800-1 000MN/m)’.

(4)

Section 2.3.2 is amended as follows:

(a)

in the paragraph under the heading ‘Traffic Flow’, the fourth sub-paragraph, the second indent under formula (2.3.2), is replaced by the following:

‘–

v is their speed [km/h] in the j-th track section for vehicle type t and average train speed s ’;

(b)

the paragraph under the headings ‘Squeal’ is replaced by the following:

‘Curve squeal is a special source that is only relevant for curves and is therefore localised. Curve squeal is generally dependent on curvature, friction conditions, train speed, track-wheel geometry and dynamics. As it can be significant, an appropriate description is required. At locations where curve squeal occurs, generally in curves and turnouts of railway switches, suitable excess noise power spectra need to be added to the source power. The excess noise may be specific to each type of rolling stock, as certain wheel and bogie types may be significantly less prone to squeal than others. If measurements of the excess noise are available that take sufficiently the stochastic nature of squeal into account, these may be used.

If no appropriate measurements are available, a simple approach can be taken. In this approach, squeal noise shall be considered by adding the following excess values to the rolling noise sound power spectra for all frequencies.

Train

5 dB for curves with 300 m < R ≤ 500m and ltrack ≥ 50m

8 dB for curves with R ≤ 300m and ltrack ≥ 50m

8 dB for switch turnouts with R ≤ 300m

0 dB otherwise

Tram

5 dB for curves and switch turnouts with R ≤ 200 m

0 dB otherwise

where ltrack is the length of track along the curve and R is the curve radius.

The applicability of these sound power spectra or excess values shall normally be verified on-site, especially for trams and for locations where curves or turnouts are treated with measures against squeal.’;

(c)

the paragraph under the headings ‘Source directivity’, directly after equation (2.3.15) the following is added:

‘Bridge noise is modelled at source A (h = 1), for which omni-directionality is assumed.’;

(d)

the paragraph under the headings ‘Source Directivity’, the second sub-paragraph until and including formula 2.3.16 is replaced by the following:

The vertical directivity ΔLW,dir,ver,i in dB is given in the vertical plane for source A (h = 1), as a function of the centre band frequency fc,i of each i-th frequency band, and:

for 0 < ψ < π/2 is

Image 1

for - π/2< ψ <=0 is

ΔLW,dir,ver,i = 0

(2.3.16)’

(5)

In Section 2.3.3, the paragraph under the headings ‘Correction for structural radiation (bridges and viaducts)’ is replaced by the following:

Correction for structural radiation (bridges and viaducts)

In the case where the track section is on a bridge, it is necessary to consider the additional noise generated by the vibration of the bridge as a result of the excitation caused by the presence of the train. The bridge noise is modelled as an additional source of which the sound power per vehicle is given by

LW,0,bridge,i = LR,TOT,i + LH,bridge,i + 10 x lg(Na ) dB

(2.3.18)

where LH, bridge ,i is the bridge transfer function. The bridge noise LW,0, bridge ,i represents only the sound radiated by the bridge construction. The rolling noise from a vehicle on the bridge is calculated using (2.3.8) through (2.3.10), by choosing the track transfer function that corresponds to the track system that is present on the bridge. Barriers on the edges of the bridge are generally not taken into account.’.

(6)

Section 2.4.1 is amended as follows:

(a)

in the paragraph under the headings ‘Sound Power Emission – general’, the second sub-paragraph, the whole fourth element of the list including formula (2.4.1) is replaced by the following:

‘—

source lines representing moving vehicles are calculated according to formula 2.2.1’;

(b)

the number of the formula (2.4.2) is replaced by the following:

‘(2.4.1)’.

(7)

In Section 2.5.1, the seventh paragraph is replaced by the following:

‘Objects sloping more than 15° in relation to the vertical are not considered as reflectors but taken into account in all other aspects of propagation, such as ground effects and diffraction.’.

(8)

Section 2.5.5 is amended as follows:

(a)

in the paragraph under the headings ‘Sound level in favourable conditions (LF) for a path (S,R)’, the formula 2.5.6 is replaced by the following:

AF=Adiv + Aatm + Aboundary,F

(2.5.6)’

(b)

in the paragraph under the headings ‘Long-term sound level at point R in decibels A (dBA)’, the end of the first sub-paragraph below the formula 2.5.11, is replaced by the following:

‘where i is the index of the frequency band. AWC is the A-weighting correction as follows:

Frequency [Hz]

63

125

250

500

1 000

2 000

4 000

8 000

AWCf,i [dB]

-26,2

-16,1

-8,6

-3,2

0

1,2

1,0

-1,1’

(9)

Section 2.5.6 is amended as follows:

(a)

directly below Figure 2.5.b, the following sentence is added:

‘The distances dn are determined by a 2D projection on the horizontal plane.’;

(b)

the sub-paragraph under the headings ‘Calculation in Favourable Conditions’ is amended as follows:

(1)

the first sentence of point (a) is replaced by the following:

‘In equation 2.5.15 (Aground,H ) the heights zs and zr are replaced by zs + δ zs + δ zT and zr + δ zr + δ zT respectively where’;

(2)

the first sentence of point (b) is replaced by the following:

‘The lower bound of Aground,F (calculated with unmodified heights) depends on the geometry of the path:’;

(c)

in the paragraph under the heading ‘Diffraction’, the second sub-paragraph is replaced by the following:

‘In practice, the following specifications are considered in the unique vertical plane containing both source and receiver (a flattened Chinese Screen in case of a path including reflections). The direct ray from source to receiver is a straight line under homogeneous propagation conditions and a curved line (arc with radius depending on the length of the straight ray) under favorable propagation conditions.

If the direct ray is not blocked, the edge D is sought which produces the largest path length difference δ (the smallest absolute value because these path length differences are negative). Diffraction is taken into account if:

this path length difference is larger than -λ/20, and

if the “Rayleigh-criterion” is fulfilled.

This is the case, if δ is larger than λ/4 – δ*, where δ* is the path length difference calculated with this same edge D but related to the mirror source S* calculated with the mean ground plane at the source side and the mirror receiver R* calculated with the mean ground plane at the receiver side. To calculate δ* only the points S*, D and R* are taken into account – other edges blocking the path S*->D->R* are neglected.

For the above considerations, the wavelength λ is calculated using the nominal centre frequency and a speed of sound of 340 m/s.

If these two conditions are fulfilled, the edge D separates the source side from the receiver side, two separate mean ground planes are calculated, and A dif is calculated as described in the remainder of this part. Otherwise, no attenuation by diffraction is considered for this path, a common mean ground plane for the path S -> R is calculated, and A ground is calculated with no diffraction (A dif = 0 dB). This rule applies in both homogeneous and favourable conditions.’;

(d)

in the paragraph under the heading ‘Pure Diffraction’, the second sub-paragraph is replaced by the following:

‘For a multiple diffraction, if e is the total path length distance between first and last diffraction point (use curved rays in case of favourable conditions) and if e exceeds 0,3 m (otherwise C" = 1), this coefficient is defined by:

Image 2

(2.5.23)’

(e)

the Figure 2.5.d is replaced by the following:

Image 3

(f)

in the paragraph under the headings ‘Favourable Conditions’, the first sub-paragraph under Figure 2.5.e is replaced by the following:

‘In favourable conditions the three curved sound rays

Image 4
,
Image 5
, and
Image 6
have an identical radius of curvature Γ defined by:

Γ = max (1 000,8 d)

(2.5.24)

Where d is defined by the 3D distance between source and receiver of the unfolded path.’;

(g)

in the paragraph under the headings ‘Favourable Conditions’, the sub-paragraphs between formula (2.5.28) and formula (2.5.29) (the two formulas included), are replaced by the following:

Image 7

(2.5.28)’

Under favourable conditions, the propagation path in the vertical propagation plane always consists of segments of a circle whose radius is given by the 3D-distance between source and receiver, that is to say, all segments of a propagation path have the same radius of curvature. If the direct arc connecting source and receiver is blocked, the propagation path is defined as the shortest convex combination of arcs enveloping all obstacles. Convex in this context means that at each diffraction point, the outgoing ray segment is deflected downward with respect to the incoming ray segment.

Image 8
Figure 2.5.f Example of calculation of the path difference in favourable conditions, in the case of multiple diffractions

In the scenario presented in Figure 2.5.f, the path difference is:

Image 9

(2.5.29)’

(h)

the paragraphs respectively under the headings ‘Calculation of the term Δground(S,O)’ and ‘Calculation of the term Δground(O,R)’ are replaced by the following:

Calculation of the term Δground(S,O)

Image 10

(2.5.31)

where

Aground(S,O) is the attenuation due to the ground effect between the source S and the diffraction point O. This term is calculated as indicated in the previous subsection on calculations in homogeneous conditions and in the previous subsection on calculation in favourable conditions, with the following hypotheses:

zr=zo,s;

Gpath is calculated between S and O;

In homogeneous conditions:

Image 11
in Equation (2.5.17),
Image 12
in Equation (2.5.18);

In favourable conditions:

Image 13
in Equation (2.5.17),
Image 14
in Equation (2.5.20);

Δ dif(S',R) is the attenuation due to the diffraction between the image source S’ and R, calculated as in the previous subsection on Pure diffraction;

Δ dif(S,R) is the attenuation due to the diffraction between S and R, calculated as in the previous subsection on Pure diffraction.

In the special case where the source lies below the mean ground plane: Δ dif(S,R) = Δ dif(S',R) and Δ ground(S,O) = A ground(S,O)

Calculation of the term Δground(O,R)

Image 15

(2.5.32)

where

Aground (O,R) is the attenuation due to the ground effect between the diffraction point O and the receiver R. This term is calculated as indicated in the previous subsection on calculation in homogeneous conditions and in the previous subsection on calculation in favourable conditions, with the following hypotheses:

z s = z o,r

Gpath is calculated between O and R.

The G’path correction does not need to be taken into account here, as the considered source is the diffraction point. Therefore, Gpath shall indeed be used in the calculation of ground effects, including for the lower bound term of the equation which becomes -3(1- Gpath ).

In homogeneous conditions,

Image 16
in Equation (2.5.17) and
Image 17
in Equation (2.5.18).

In favourable conditions,

Image 18
in Equation (2.5.17) and
Image 19
in Equation (2.5.20).

Δ dif(S,R’) is the attenuation due to the diffraction between S and the image receiver R’, calculated as in the previous section on pure diffraction.

Δ dif(S,R) is the attenuation due to the diffraction between S and R, calculated as in the previous subsection on pure diffraction.

In the special case where the receiver lies below the mean ground plane: Δ dif(S,R’) = Δ dif(S,R) and Δ ground ( O,R ) = A ground ( O,R ) ’’;

(i)

in Section 2.5.6, the paragraph under the headings ‘Vertical Edge Scenarios’ is replaced by the following:

Vertical Edge Scenarios

Equation (2.5.21) may be used to calculate the diffractions on vertical edges (lateral diffractions) in case of industrial noise. If this is the case, Adif = Δdif(S,R) is taken and the term Aground is kept. In addition, Aatm and Aground shall be calculated from the total length of the propagation path. Adiv is still calculated from the direct distance d. Equations (2.5.8) and (2.5.6) respectively become:

Image 20

(2.5.33)


Image 21

(2.5.34)

Δdif is indeed used in homogeneous conditions in equation (2.5.34).

Lateral diffraction is considered only in cases, where the following conditions are met:

 

The source is a real point source – not produced by segmentation of an extended source like a line- or area source.

 

The source is not a mirror source constructed to calculate a reflection.

 

The direct ray between source and receiver is entirely above the terrain profile.

 

In the vertical plane containing S and R the path length difference δ is larger than 0, that is to say, the direct ray is blocked. Therefore, in some situations, lateral diffraction may be considered under homogeneous propagation conditions but not under favourable propagation conditions.

If all these conditions are met, up to two laterally diffracted propagation paths are taken into account in addition to the diffracted propagation path in the vertical plane containing source and receiver. The lateral plane is defined as the plane that is perpendicular to the vertical plane and also contains source and receiver. The intersection areas with this lateral plane are constructed from all obstacles that are penetrated by the direct ray from source to receiver. In the lateral plane, the shortest convex connection between source and receiver, consisting of straight segments and encompassing these intersection areas, defines the vertical edges that are taken into account when the laterally diffracted propagation path is constructed.

To calculate ground attenuation for a laterally diffracted propagation path, the mean ground plane between the source and the receiver is calculated taking into account the ground profile vertically below the propagation path. If, in the projection onto a horizontal plane, a lateral propagation path cuts the projection of a building, this is taken into account in the calculation of Gpath (usually with G = 0) and in the calculation of the mean ground plane with the vertical height of the building.’;

(j)

in the paragraph under the headings ‘Reflections on vertical obstacles – Attenuation through absorption’, the second and third sub-paragraphs are replaced by the following:

‘Surfaces of objects are only considered as reflectors if their slopes are less than 15° with respect to the vertical. Reflections are considered only for paths in the vertical propagation plane, that is to say, not for laterally diffracted paths. For the incident and reflected paths, and assuming the reflecting surface is to be vertical, the point of reflection (which lays on the reflecting object) is constructed using straight lines under homogeneous and curved lines under favourable propagation conditions. The height of the reflector, when measured through the point of reflection and viewed from the direction of the incident ray, shall be at least 0,5 m. After projection onto a horizontal plane, the width of the reflector when measured through the point of reflection and viewed from the direction of the incident ray, shall be at least 0,5 m.’;

(k)

in the paragraph under the headings ‘Attenuation through retrodiffraction’, the following is added to the end of the existing text:

‘When there is a reflecting noise barrier or obstacle close to the railway track, the sound rays from the source are successively reflected off this obstacle and off the lateral face of the railway vehicle. In these conditions, the sound rays pass between the obstacle and railway vehicle body before diffraction from the top edge of the obstacle.

To take multiple reflections between railway vehicle and a nearby obstacle into account, the sound power of a single equivalent source is calculated. In this calculation, ground effects are ignored.

To derive the sound power of the equivalent source the following definitions apply:

The origin of the coordinate system is the nearside railhead

A real source, is located at S (ds =0, hs ), where hs is the height of the source relative to the railhead

The plane h = 0 defines the cars’ body

A vertical obstacle with top at B (dB , hb )

A receiver located at a distance dR > 0 behind the obstacle where R has coordinates (dB+dR , hR )

The inner side of the obstacle has absorption coefficients α(f) per octave band. The railway vehicle body has an equivalent reflection coefficient Cref . Normally Cref is equal to 1. Only, in the case of open flat-bed freight wagons a value of 0 can be used. If dB >5hB or α(f)>0,8 no train barrier interaction is taken into account.

In this configuration, multiple reflections between the railway vehicle body and the obstacle can be calculated using image sources positioned at Sn (dn = -2n. dB, hn = hs), n=0,1,2,..N; as shown in the Figure 2.5.k.

Image 22
Figure 2.5.k

The sound power of the equivalent source is expressed by:

Image 23

(2.5.39)

Where the sound power of the partial sources is given by:

LW,n = LW + ΔLn

ΔLn= ΔLgeo,n + ΔLdif,n + ΔLabs,n + ΔLref,n + ΔLretrodif,n

With:

LW

the sound power of the real source

ΔLgeo,n

a correction term for spherical divergence

ΔLdif,n

a correction term for diffraction by the top of the obstacle

ΔLabs,n

a correction term for the absorption at the inner side of the obstacle

ΔLref,n

a correction term for reflection from the railway vehicle body

ΔLretrodif,n

a correction term for the finite height of the obstacle as a reflector

The correction for spherical divergence is given by

Image 24

(2.5.40)


Image 25

(2.5.41)

The correction for diffraction by the top of the obstacle is given by:

(2.5.42)

ΔLdif,n = D0 - Dn

(2.5.42)

Where Dn is the attenuation due to diffraction, calculated by means of formula 2.5.21 where C'' = 1 , for the path linking source Sn to receiver R, taking into account diffraction at the top of the obstacle B:

δ n = ± (|SnB| + |BR| - |SnR|)

(2.5.43)

The correction for absorption on the inner side of the obstacle is given by:

ΔLabs,n = 10•n•lg (1-α)

(2.5.44)

The correction for reflection from the railway vehicle body is given by:

ΔLref,n = 10•n•lg (Cref)

(2.5.45)

The correction for the finite height of the reflecting obstacle is taken into account by means of retro-diffraction. The ray path corresponding to an image of order N > 0 will be reflected n times by the obstacle. In the cross section, these reflections take place at distances

di = – (2i-q)db, i = 1,2,..n Where Pi (d = di, h = hb ), i = 1,2,..n as the tops of these reflecting surfaces. At each of these points a correction term is calculated as:

Image 26

(2.5.46)

Where Δ retrodif,n,i is calculated for a source at position Sn an obstacle top at Pi and a receiver at position R’. The position of the equivalent receiver R’ is given by R’=R if the receiver is above line of sight from Sn to B; otherwise the equivalent receiver position is taken on the line of sight vertically above the real receiver; namely:

dR' = dR

(2.5.47)


Image 27

(2.5.48)’

(10)

Section 2.7.5 ‘Aircraft noise and performance’, is replaced by the following:

‘2.7.5    Aircraft noise and performance

The ANP database provided in Appendix I contains aircraft and engine performance coefficients, departure and approach profiles as well as NPD relationships for a substantial proportion of civil aircraft operating from European Union airports. For aircraft types or variants for which data are not currently listed, they can best be represented by data for other, normally similar, aircrafts that are listed.

This data was derived to calculate noise contours for an average or representative fleet and traffic mix at an airport. It may not be appropriate to predict absolute noise levels of an individual aircraft model and is not suitable to compare the noise performance and characteristics of specific aircraft types, models or a specific fleet of aircraft. Instead, to determine which aircraft types, models or specific fleet of aircrafts are the noisiest contributors, the noise certificates shall be looked at.

The ANP database includes one or several default take-off and landing profiles for each aircraft type listed. The applicability of these profiles to the airport under consideration shall be examined, and either the fixed-point profiles or the procedural steps that best represent the flight operations at this airport shall be determined.’.

(11)

In Section 2.7.11, the title of the second paragraph under the headings ‘Track dispersion’ is replaced by the following:

Lateral track dispersion ’.

(12)

In Section 2.7.12, after the sixth sub-paragraph and before the seventh and last sub-paragraph, the following sub-paragraph is inserted:

‘An aircraft noise source should be entered at a minimum height of 1,0m (3,3ft) above the aerodrome level, or above the terrain elevation levels of the runway, as relevant.’.

(13)

Section 2.7.13, ‘Construction of flight path segments’, is replaced by the following:

‘2.7.13    Construction of flight path segments

Each flight path has to be defined by a set of segment coordinates (nodes) and flight parameters. The starting point is to determine the co-ordinates of the ground track segments. The flight profile is then calculated, remembering that for a given set of procedural steps, the profile depends on the ground track; e.g. at the same thrust and speed the aircraft climb rate is less in turns than in straight flight. Sub-segmentation is then undertaken for the aircraft on the runway (takeoff or landing ground roll), and for the aircraft near to the runway (initial climb or final approach). Airborne segments with significantly different speeds at their start and end points should then be sub-segmented. The two-dimensional co-ordinates of the ground track (*) segments are determined and merged with the two-dimensional flight profile to construct the three-dimensional flight path segments. Finally, any flight path points that are too close together are removed.

Flight profile

The parameters describing each flight profile segment at the start (suffix 1) and end (suffix 2) of the segment are:

s1, s2

distance along the ground track,

z1, z2

aeroplane height,

V1 , V2

groundspeed,

P1 , P2

noise-related power parameter (matching that for which the NPD-curves are defined), and

ε1, ε 2

bank angle.

To build a flight profile from a set of procedural steps (flight path synthesis), segments are constructed in sequence to achieve required conditions at the end points. The end-point parameters for each segment become the start-point parameters for the next segment. In any segment calculation the parameters are known at the start; required conditions at the end are specified by the procedural step. The steps themselves are defined either by the ANP defaults or by the user (e.g. from aircraft flight manuals). The end conditions are usually height and speed; the profile building task is to determine the track distance covered in reaching those conditions. The undefined parameters are determined via flight performance calculations described in Appendix B.

If the ground track is straight, the profile points and associated flight parameters can be determined independently of the ground track (bank angle is always zero). However ground tracks are rarely straight; they usually incorporate turns and, to achieve best results, these have to be accounted for when determining the 2-dimensional flight profile, where necessary splitting profile segments at ground track nodes to inject changes of bank angle. As a rule the length of the next segment is unknown at the outset and it is calculated provisionally assuming no change of bank angle. If the provisional segment is then found to span one or more ground track nodes, the first being at s, namely s1 < s < s2 , the segment is truncated at s, calculating the parameters there by interpolation (see below). These become the end-point parameters of the current segment and the start-point parameters of a new segment – which still has the same target end conditions. If there is no intervening ground track node the provisional segment is confirmed.

If the effects of turns on the flight profile are to be disregarded, the straight flight, single segment solution is adopted although the bank angle information is retained for subsequent use.

Whether or not turn effects are fully modelled, each 3-dimensional flight path is generated by merging its 2-dimensional flight profile with its 2-dimensional ground track. The result is a sequence of co-ordinate sets (x,y,z), each being either a node of the segmented ground track, a node of the flight profile or both, the profile points being accompanied by the corresponding values of height z, ground speed V, bank angle ε and engine power P. For a track point (x,y) which lies between the end points of a flight profile segment, the flight parameters are interpolated as follows:

z = z1 + f ·(z2 – z1)

(2.7.3)

Image 28

(2.7.4)

ε = ε1 + f · (ε2 - ε1)

(2.7.5)

Image 29

(2.7.6)

where

f = (s - s 1)/(s 2 - s 1)

(2.7.7)

Note that whilst z and ε are assumed to vary linearly with distance, V and P are assumed to vary linearly with time (namely constant acceleration (**)).

When matching flight profile segments to radar data (flight path analysis) all end-point distances, heights, speeds and bank angles are determined directly from the data; only the power settings have to be calculated using the performance equations. As the ground track and flight profile coordinates can also be matched appropriately, this is usually quite straightforward.

Takeoff ground roll

When taking off, as an aircraft accelerates between the point of brake release (alternatively termed Start-of-Roll SOR) and the point of lift-off, speed changes dramatically over a distance of 1 500 to 2 500 m, from zero to between around 80 and 100 m/s.

The takeoff roll is thus divided into segments with variable lengths over each of which the aircraft speed changes by specific increment ΔV of no more than 10 m/s (about 20 kt). Although it actually varies during the takeoff roll, an assumption of constant acceleration is adequate for this purpose. In this case, for the takeoff phase, V1 is initial speed, V2 is the takeoff speed, nTO is the number of takeoff segment and sTO is the equivalent takeoff distance. For equivalent takeoff distance sTO (see Appendix B) and takeoff speed V1 and takeoff speed VTO the number nTO of segments for the ground roll is

nTO = int (1 + (VTO - V 1) /10)

(2.7.8)

and hence the change of velocity along a segment is

ΔV = VTO/nTO

(2.7.9)

and the time Δt on each segment is (constant acceleration assumed)

Image 30

(2.7.10)

The length sTO,k of segment k (1 ≤ k ≤ nTO) of the takeoff roll is then:

Image 31

(2.7.11)

Example: For a takeoff distance sTO  = 1 600 m, V1 = 0m/s and V2 = 75 m/s, this yields nTO  = 8 segments with lengths ranging from 25 to 375 metres (see Figure 2.7.g):

Image 32
Figure 2.7.g Segmentation of a takeoff roll (example for 8 segments)

Similarly to the speed changes, the aircraft thrust changes over each segment by a constant increment ΔP, calculated as

ΔP = (PTO - Pinit ) / nTO

(2.7.12)

where PTO and P init respectively designate the aircraft thrust at the point of lift-off and the aircraft thrust at the start of takeoff roll.

The use of this constant thrust increment (instead of using the quadratic form equation 2.7.6) aims at being consistent with the linear relationship between thrust and speed in the case of jet-engine aircraft.

Important note: The above equations and example implicitly assume that the initial speed of the aircraft at the start of the takeoff phase is zero. This corresponds to the common situation where the aircraft starts to roll and accelerate from the brake release point. However, there are also situations where the aircraft may start to accelerate from its taxiing speed, without stopping at the runway threshold. In that case of non-zero initial speed Vinit the following “generalised” equations should be used in replacement of equations 2.7.8, 2.7.9. 2.7.10 and 2.7.11.

Image 33

(2.7.13)

In this case, for the takeoff phase, V1  is initial speed Vinit , V2  is the takeoff speed VTO , n is the number of takeoff segment nTO , s is the equivalent takeoff distance sTO and sk  is the length sTO,k  of segment k (1[Symbol]k[Symbol]n).

The landing ground roll

Although the landing ground roll is essentially a reversal of the takeoff ground roll, special account has to be taken of

reverse thrust which is sometimes applied to decelerate the aircraft, and

aeroplanes leaving the runway after deceleration (aircraft that leave the runway no longer contribute to air noise as noise from taxiing is disregarded).

In contrast to the takeoff roll distance, which is derived from aircraft performance parameters, the stop distance sstop (namely the distance from touchdown to the point where the aircraft leaves the runway) is not purely aircraft specific. Although a minimum stop distance can be estimated from aircraft mass and performance (and available reverse thrust), the actual stop distance depends also on the location of the taxiways, on the traffic situation, and on airport-specific regulations on the use of reverse thrust.

The use of reverse thrust is not a standard procedure – it is only applied if the needed deceleration cannot be achieved by the use of the wheel brakes. (Reverse thrust can be exceptionally disturbing as a rapid change of engine power from idle to reverse settings produces a sudden burst of noise.)

However, most runways are used for departures as well as for landings so that reverse thrust has a very small effect on the noise contours since the total sound energy in the vicinity of the runway is dominated by the noise produced from takeoff operations. Reverse thrust contributions to contours may only be significant when runway use is limited to landing operations.

Physically, reverse thrust noise is a very complex process but because of its relatively minor significance to air noise contours it can be modelled simplistically – the rapid change in engine power being taken into account by suitable segmentation.

It is clear that modelling the landing ground roll is less straightforward than for takeoff roll noise. The following simplified modelling assumptions are recommended for general use, when no detailed information is available (see Figure 2.7.h.1).

Image 34
Figure 2.7.h.1 Modelling of landing ground roll

The aircraft crosses the landing threshold (which has the co-ordinate s = 0 along the approach ground track) at an altitude of 50 feet, and then continues to descend on its glideslope until it touches down on the runway. For a 3° glideslope, the touch-down point is 291 m beyond the landing threshold (as illustrated in Figure 2.7.h.1). The aircraft is then decelerated over a stop-distance sstop – aircraft specific values of which are given in the ANP database – from final approach speed Vfinal to 15 m/s. Because of the rapid changes in speed during this segment it should be sub-segmented in the same manner as for the takeoff ground roll (or airborne segments with rapid speed changes), using the generalised equations 2.7.13 (as taxi-in speed is not equal to zero). The engine power changes from final approach power at touchdown to a reverse thrust power setting Prev over a distance 0,1•sstop , then decreases to 10 % of the maximum available power over the remaining 90 percent of the stop distance. Up to the end of the runway (at s = -s RWY) aircraft speed remains constant.

NPD curves for reverse thrust are not at present included in the ANP database, and it is therefore necessary to rely on the conventional curves for modelling this effect. Typically the reverse thrust power Prev is around 20 % of the full power setting and this is recommended when no operational information is available. However, at a given power setting, reverse thrust tends to generate significantly more noise than forward thrust and an increment ΔL shall be applied to the NPD-derived event level, increasing from zero to a value ΔLrev (5 dB is recommended provisionally (***)) along 0,1•sstop and then falling linearly to zero along the remainder of the stop distance.

Segmentation of the initial climb and final approach segments

The segment-to-receiver geometry changes rapidly along the initial climb and final approach airborne segments, particularly with respect to observer locations to the side of the flight track, where the elevation angle (beta angle) also changes rapidly as the aircraft climbs or descends through these initial/final segments. Comparisons with very small segment calculations show that using a single (or a limited number of) climb or approach airborne segment(s) below a certain height (relative to the runway) results in a poor approximation of noise to the side of the flight track for integrated metrics. This is due to the application of a single lateral attenuation adjustment on each segment, corresponding to a single segment-specific value of the elevation angle, whereas the rapid change of this parameter results in significant variations of the lateral attenuation effect along each segment. Calculation accuracy is improved by sub-segmenting the initial climb and last approach airborne segments. The number of sub-segments and the length of each determine the lateral attenuation change “granularity” which will be accounted for. Noting the expression of total lateral attenuation for aircraft with fuselage-mounted engines, it can be shown that for a limiting change in lateral attenuation of 1,5 dB per sub-segment, the climb and approach airborne segments located below a height of 1 289,6 m (4 231 ft) above the runway should be sub-segmented based on the following set of height values:

 

z = {18,9, 41,5, 68,3, 102,1, 147,5, 214,9, 334,9, 609,6, 1 289,6} metres, or

 

z = {62, 136, 224, 335, 484, 705, 1 099, 2 000, 4 231} feet

For each original segment below 1 289,6 m (4 231 ft), the above heights are implemented by identifying which height in the set above is closest to the original endpoint height (for a climb segment) or start-point height (for an approach segment). The actual sub-segment heights, zi, would then be calculated using:

 

zi = ze [z’i / z’N] (i = k..N)

where:

ze

is the original segment endpoint height (climb) or start-point height (approach)

z’i

is the ith member of the set of height values listed above

z’N

is the closest height from the set of height values listed above to height ze

k

denotes the index of the first member of the set of height values for which the calculated zk is strictly greater than the endpoint height of the previous original climb segment or the start-point height of the next original approach segment to be sub-segmented.

In the specific case of an initial climb segment or last approach segment, k = 1, but in the more general case of airborne segments not connected to the runway, k will be greater than 1.

Example for an initial climb segment:

If the original segment endpoint height is ze = 304,8 m, then from the set of height values, 214,9 m < ze < 334,9 m and the closest height from the set to ze is z’7 = 334,9 m. The sub-segment endpoint heights are then computed by:

 

zi = 304,8 [z’i / 334,9] for i = 1 to 7

(noting that k =1 in that case, as this is an initial climb segment)

Thus z1 would be 17,2 m and z2 would be 37,8 m, etc.

Segmentation of airborne segments

For airborne segments where there is a significant speed change along a segment, this shall be subdivided as for the ground roll, namely

nseg = int (1 + |V 2 - V 1|/10)

(2.7.14)

where V1 and V2 are the segment start and end speeds respectively. The corresponding sub-segment parameters are calculated in a similar manner as for the takeoff ground roll, using equations 2.7.9 to 2.7.11.

Ground track

A ground track, whether a backbone track or a dispersed sub-track, is defined by a series of (x,y) co-ordinates in the ground plane (e.g. from radar information) or by a sequence of vectoring commands describing straight segments and circular arcs (turns of defined radius r and change of heading Δξ).

For segmentation modelling, an arc is represented by a sequence of straight segments fitted to sub-arcs. Although they do not appear explicitly in the ground-track segments, the banking of aircraft during turns influences their definition. Appendix B4 explains how to calculate bank angles during a steady turn but of course these are not actually applied or removed instantaneously. How to handle the transitions between straight and turning flight, or between one turn and an immediately sequential one, is not prescribed. As a rule, the details, which are left to the user (see Section 2.7.11), are likely to have a negligible effect on the final contours; the requirement is mainly to avoid sharp discontinuities at the ends of the turn and this can be achieved simply, for example, by inserting short transition segments over which the bank angle changes linearly with distance. Only in the special case that a particular turn is likely to have a dominating effect on the final contours would it be necessary to model the dynamics of the transition more realistically, to relate bank angle to particular aircraft types and to adopt appropriate roll rates. Here it is sufficient to state that the end sub-arcs Δξtrans in any turn are dictated by bank angle change requirements. The remainder of the arc with change of heading Δξ - 2·Δξtrans degrees is divided into nsub sub-arcs according to the equation:

nsub = int (1 + (Δξ – 2•Δξ trans ) / 10

(2.7.15)

where int(x) is a function that returns the integer part of x. Then the change of heading Δξ sub of each sub-arc is computed as

Δξ = (ξ-2•Δξ trans ) / nsub

(2.7.16)

where nsub needs to be large enough to ensure that Δξ sub ≤ 10 degrees. The segmentation of an arc (excluding the terminating transition sub-segments) is illustrated in Figure 2.7.h.2  (****).

Image 35
Figure 2.7.h.2 Construction of flight path segments dividing turn into segments of length Δs (upper view in horizontal plane, lower view in vertical plane) s

Once the ground track segments have been established in the x-y plane, the flight profile segments (in the s-z plane) are overlaid to produce the three-dimensional (x, y, z) track segments.

The ground track should always extend from the runway to beyond the extent of the calculation grid. This can be achieved, if necessary, by adding a straight segment of suitable length to the last segment of the ground track.

The total length of the flight profile, once merged with the ground track, must also extend from the runway to beyond the extent of the calculation grid. This can be achieved, if necessary, by adding an extra profile point:

to the end of a departure profile with speed and thrust values equal to those of the last departure profile point, and height extrapolated linearly from the last and penultimate profile points, or

to the beginning of an arrival profile with speed and thrust value equal to those of the first arrival profile point, and height extrapolated linearly back from the first and second profile points.

Segmentation adjustments of airborne segments

After the 3-D flight path segments have been derived according to the procedure described in Section 2.7.13, further segmentation adjustments may be necessary to remove flight path points which are too close together.

When adjacent points are within 10 metres of each other, and when the associated speeds and thrusts are the same, one of the points should be eliminated.

(*)  For this purpose the total length of the ground track should always exceed that of the flight profile. This can be achieved, if necessary, by adding straight segments of suitable length to the last segment of the ground track."

(**)  Even if engine power settings remain constant along a segment, propulsive force and acceleration can change due to variation of air density with height. However, for the purposes of noise modelling these changes are normally negligible."

(***)  This was recommended in the previous edition of ECAC Doc 29 but is still considered provisional pending the acquisition of further corroborative experimental data."

(****)  Defined in this simple way, the total length of the segmented path is slightly less than that of the circular path. However the consequent contour error is negligible if the angular increments are below 30°.’."

(14)

Section 2.7.16. ‘Determination of event levels from NPD-data’, is replaced by the following:

‘2.7.16    Determination of event levels from NPD-data

The principal source of aircraft noise data is the international Aircraft Noise and Performance (ANP) database. This tabulates Lmax and LE as functions of propagation distance d – for specific aircraft types, variants, flight configurations (approach, departure, flap settings), and power settings P. They relate to steady flight at specific reference speeds Vref along a notionally infinite, straight flight path (*).

How values of the independent variables P and d are specified is described later. In a single look-up, with input values P and d, the output values required are the baseline levels Lmax(P,d) and/or LE (P,d) (applicable to an infinite flight path). Unless values happen to be tabulated for P and/or d exactly, it will generally be necessary to estimate the required event noise level(s) by interpolation. A linear interpolation is used between tabulated power-settings, whereas a logarithmic interpolation is used between tabulated distances (see Figure 2.7.i).

Image 36
Figure 2.7.i Interpolation in noise-power-distance curves

If Pi and Pi+ 1 are engine power values for which noise level versus distance data are tabulated, the noise level L(P) at a given distance for intermediate power P, between Pi and Pi+ 1 ,is given by:

Image 37

(2.7.19)

If, at any power setting, di and di+ 1 are distances for which noise data are tabulated, the noise level L(d) for an intermediate distance d, between di and di+ 1 is given by

Image 38

(2.7.20)

By using equations (2.7.19) and (2.7.20), a noise level L(P,d) can be obtained for any power setting P and any distance d that is within the envelope of the NPD data base.

For distances d that lie outside the NPD envelope, equation 2.7.20 is used to extrapolate from the last two values, namely inwards from L(d1) and L(d2) or outwards from L(dI-1) and L(dI) where I is the total number of NPD points on the curve. Thus

Inwards:

Image 39

(2.7.21)

Outwards:

Image 40

(2.7.22)

As, at short distances d, noise levels increase very rapidly with decreasing propagation distance, it is recommended that a lower limit of 30 m be imposed on d, namely d = max(d, 30 m).

Impedance adjustment of standard NPD data

The NPD data provided in the ANP database are normalized to reference atmospheric conditions (temperature of 25 °C and pressure of 101,325 kPa). Before applying the interpolation/extrapolation method previously described, an acoustic impedance adjustment shall be applied to these standard NPD data.

Acoustic impedance is related to the propagation of sound waves in an acoustic medium, and is defined as the product of the density of air and the speed of sound. For a given sound intensity (power per unit area) perceived at a specific distance from the source, the associated sound pressure (used to define SEL and LAmax metrics) depends on the acoustic impedance of the air at the measurement location. It is a function of temperature, atmospheric pressure (and indirectly altitude). There is therefore a need to adjust the standard NPD data of the ANP database to account for the actual temperature and pressure conditions at the receiver point, which are generally different from the normalized conditions of the ANP data.

The impedance adjustment to be applied to the standard NPD levels is expressed as follows:

Image 41

(2.7.23)

where:

Δ Impedance

Impedance adjustment for the actual atmospheric conditions at the receiver point (dB)

ρ·c

Acoustic impedance (newton seconds/m3) of the air at the aerodrome elevation (409,81 being the air impedance associated to the reference atmospheric conditions of the NPD data in the ANP database).

Impedance ρ·c is calculated as follows:

Image 42

(2.7.24)


δ

p/po, the ratio of the ambient air pressure at the observer altitude to the standard air pressure at mean sea level: p0 = 101,325 kPa (or 1 013,25 mb)

θ

(T + 273,15)/(T0 + 273,15) the ratio of the air temperature at the observer altitude to the standard air temperature at mean sea level: T0 = 15,0 °C

The acoustic impedance adjustment is usually less than a few tenths of one dB. In particular, it should be noted that under the standard atmospheric conditions (p0 = 101,325 kPa and T0 = 15,0 °C), the impedance adjustment is less than 0,1 dB (0,074 dB). However, when there is a significant variation in temperature and atmospheric pressure relative to the reference atmospheric conditions of the NPD data, the adjustment can be more substantial.

(*)  Although the notion of an infinitely long flight path is important to the definition of event sound exposure level LE , it has less relevance in the case of event maximum level Lmax which is governed by the noise emitted by the aircraft when at a particular position at or near its closest point of approach to the observer. For modelling purposes the NPD distance parameter is taken to be the minimum distance between the observer and segment.’."

(15)

In Section 2.7.18. ‘Flight path segment parameters’, the paragraph under the headings ‘Segment power P’ is replaced by the following:

Segment power P

The tabulated NPD data describe the noise of an aircraft in steady straight flight on an infinite flight path, that is to say, at constant engine power P. The recommended methodology breaks actual flight paths, along which speed and direction vary, into a number of finite segments, each of which is then taken to be part of a uniform, infinite flight path for which the NPD data are valid. But the methodology provides for changes of power along the length of a segment; it is taken to change quadratically with distance from P1 at its start to P2 at its end. It is therefore necessary to define an equivalent steady segment value P. This is taken to be the value at the point on the segment that is closest to the observer. If the observer is alongside the segment (Figure 2.7.k) it is obtained by interpolation as given by equation 2.7.8 between the end values, namely

Image 43

(2.7.31)

If the observer is behind or ahead of the segment, it is that at the nearest end point, P1 or P2 .’.

(16)

Section 2.7.19 is amended as follows

(a)

in the paragraph under the headings ‘The duration correction DV (Exposure levels LE only)’ until and including the formula 2.7.34 is replaced by the following:

The duration correction ΔV (Exposure levels LE only)

This correction (*) accounts for a change in exposure levels if the actual segment groundspeed is different to the aircraft reference speed Vref to which the basic NPD-data relate.

Like engine power, speed varies along the flight path segment (from VT1 to VT2, which are the speeds output from Appendix B or from a previously pre-calculated flight profile).

For airborne segments, Vseg is the segment speed at the closest point of approach, S, interpolated between the segment end-point values assuming it varies quadratically with time; namely if the observer is alongside the segment:

Image 44

(2.7.32)

(*)  This is known as the duration correction because it makes allowance for the effects of aircraft speed on the duration of the sound event – implementing the simple assumption that, other things being equal, duration, and thus received event sound energy, is inversely proportional to source velocity.’;"

(b)

the formula numbers ‘(2.7.35)’, ‘(2.7.36)’ and ‘(2.7.37)’, are respectively replaced by the following other numbers:

‘(2.7.33)’, ‘(2.7.34)’ and ‘(2.7.35)’;

(c)

the following first two words of the paragraph under the headings ‘Sound propagation geometry’ are replaced by the following:

Figure 2.7.m ’;

(d)

the table in the second subparagraph is replaced by the following:

a = 0,00384,

b = 0,0621,

c = 0,8786

for wing-mounted engines and

(2.7.36)

a = 0,1225,

b = 0,3290,

c = 1

for fuselage-mounted engines.

(2.7.37)’

(e)

the text under the Figure 2.7.p is replaced by the following:

‘To calculate the lateral attenuation using equation (2.7.40) (where β is measured in a vertical plane), an extended level flight path is recommended. An extended level flight path is defined in the vertical plane through S1S2 and with the same perpendicular slant distance dp from the observer. This is visualised by rotating the triangle ORS, and its attached flight path about OR (see Figure 2.7p) through angle γ thus forming the triangle ORS’. The elevation angle of this equivalent level path (now in a vertical plane) is β = tan-1(h/ℓ) ( remains unchanged). In this case, for an observer alongside, angle β and the resulting lateral attenuation Λ(β, ) are the same for LE and Lmax metrics.

Figure 2.7.r illustrates the situation when the observer point O lies behind the finite segment, not alongside. Here the segment is observed as a more distant part of an infinite path; a perpendicular can only be drawn to point Sp on its extension. The triangle OS1S2 accords with Figure 2.7.j which defines the segment correction Δ F . But in this case the parameters for lateral directivity and attenuation are less obvious.

Image 45
Figure 2.7.r Observer behind segment

For maximum level metrics, the NPD distance parameter is taken as the shortest distance to the segment, namely d = d 1. For exposure level metrics, it is the shortest distance dp from O to Sp on the extended flight path; namely the level interpolated from the NPD table is LE ∞ (P 1, dp ).

The geometrical parameters for lateral attenuation also differ for maximum and exposure level calculations. For maximum level metrics the adjustment Λ(β,) is given by equation 2.7.40 with β = β1 = sin-1 (z 1 /d 1) and

Image 46
where β1 and d1 are defined by the triangle OC1S1 in the vertical plane through O and S1 .

When calculating the lateral attenuation for airborne segments only and exposure level metrics, remains the shortest lateral displacement from the segment extension (OC). But to define an appropriate value of β it is again necessary to visualise an (infinite) equivalent level flight path of which the segment can be considered part. This is drawn through S1', height h above the surface, where h is equal to the length of RS1 the perpendicular from the ground track to the segment. This is equivalent to rotating the actual extended flight path through angle γ about point R (see Figure 2.7.q). Insofar as R is on the perpendicular to S1 , the point on the segment that is closest to O, the construction of the equivalent level path is the same as when O is alongside the segment.

The closest point of approach of the equivalent level path to the observer O is at S’, slant distance d, so that the triangle OCS’ so formed in the vertical plane then defines the elevation angle β = cos -1(ℓ/d). Although this transformation might seem rather convoluted, it should be noted that the basic source geometry (defined by d1 , d2 and φ) remains untouched, the sound travelling from the segment towards the observer is simply what it would be if the entire flight along the infinitely extended inclined segment (of which for modelling purposes the segment forms part) were at constant speed V and power P1 . The lateral attenuation of sound from the segment received by the observer, on the other hand, is related not to β p , the elevation angle of the extended path, but to β, that of the equivalent level path.

Remembering that, as conceived for modelling purposes, the engine installation effect Δ I is two-dimensional, the defining depression angle φ is still measured laterally from the aircraft wing plane (the baseline event level is still that generated by the aircraft traversing the infinite flight path represented by the extended segment). Thus the depression angle is determined at the closest point of approach, namely φ = β p  – ε where β p is angle SpOC.

The case of an observer ahead of the segment is not described separately; it is evident that this is essentially the same as the case of the observer behind.

However, for exposure level metrics where observer locations are behind ground segments during the takeoff roll and ahead of ground segments during the landing roll, the value of β becomes the same as that for maximum level metrics.

For locations behind takeoff roll segments:

 

β = β 1 = sin-1(z 1/d 1) and

Image 47

For locations ahead of landing roll segments:

 

β = β 2 = sin-1(z 2/d 2) and

Image 48

The rationale for using these particular expressions is related to the application of the start-of-roll directivity function behind takeoff roll segments and a semi-circular directivity assumption ahead of landing roll segments.

The finite segment correction Δ F (Exposure levels LE only)

The adjusted baseline noise exposure level relates to an aircraft in continuous, straight, steady level flight (albeit with a bank angle ε that is inconsistent with straight flight). Applying the (negative) finite segment correction Δ F = 10•lg(F), where F is the energy fraction, further adjusts the level to what it would be if the aircraft traversed the finite segment only (or were completely silent for the remainder of the infinite flight path).

The energy fraction term accounts for the pronounced longitudinal directivity of aircraft noise and the angle subtended by the segment at the observer position. Although the processes that cause the directionality are very complex, studies have shown that the resulting contours are quite insensitive to the precise directional characteristics assumed. The expression for Δ F below is based on a fourth-power 90-degree dipole model of sound radiation. It is assumed to be unaffected by lateral directivity and attenuation. How this correction is derived is described in detail in Appendix E.

The energy fraction F is a function of the “view” triangle OS1S2 defined in Figures 2.7.j to 2.7.l such that:

Image 49

(2.7.45)

With

Image 50
;
Image 51
;
Image 52
;
Image 53

where dλ is known as the “scaled distance” (see Appendix E) and Vref = 270,05 ft/s (for the 160 knots reference speed). Note that Lmax(P, dp) is the maximum level, from NPD data, for perpendicular distance dp , NOT the segment Lmax .It is advised to apply a lower limit of -150 dB to Δ F.

In the particular case of observer locations behind every takeoff ground-roll segment, a reduced form of the noise fraction expressed in Equation 2.7.45 is used, which corresponds to the specific case of q = 0.

This is denoted

Image 54
where “d” clarifies its use for departure operations, and is computed as:

Image 55

(2.7.46.a)

where α2 = λ / dλ.

This particular form of the noise fraction is used in conjunction with the start-of-roll directivity function, whose application method is further explained in the section below.

In the particular case of observer locations ahead of every landing ground-roll segment, a reduced form of the noise fraction expressed in equation 2.7.45 is used, which corresponds to the specific case of q = λ. This is denoted Δ’F,a where “a” clarifies its use for arrival operations, and is computed as:

Image 56

(2.7.46.b)

where α1 = -λ / dλ.

The use of this form, without the application of any further horizontal directivity adjustment (unlike the case of locations behind takeoff ground-roll segments – see section on start-of-roll directivity), implicitly assumes a semi-circular horizontal directivity ahead of landing ground roll segments.

The start-of-roll directivity function Δ SOR

The noise of aircraft – especially jet aircraft equipped with lower by-pass ratio engines – exhibits a lobed radiation pattern in the rearward arc, which is characteristic of jet exhaust noise. This pattern is the more pronounced the higher the jet velocity and the lower the aircraft speed. This is of special significance for observer locations behind the start of roll, where both conditions are fulfilled. This effect is taken into account by a directivity function Δ SOR .

The function Δ SOR has been derived from several noise measurement campaigns using microphones adequately positioned behind and on the side of the SOR of departing jet aircraft.

Figure 2.7.r shows the relevant geometry. The azimuth angle Ψ between the aircraft longitudinal axis and the vector to the observer is defined by

Image 57

(2.7.47)

The relative distance q is negative (see Figure 2.7.j) so that Ψ ranges from 90° relative to the aircraft forward heading, to 180° in the reverse direction.

Image 58
Figure 2.7.r Aircraft-observer geometry for estimation of directivity correction

The function Δ SOR represents the variation of the overall noise emanating from the takeoff ground roll measured behind the start of roll, relatively to the overall noise from takeoff ground roll measured on the side of the SOR, at the same distance:

LTGR (dSOR , ψ) = LTGR (dSOR ,90°) +Δ SOR (dSOR ,ψ) (2.7.48)

where LTGR (dSOR ,90°) is the overall takeoff ground roll noise level at the point distance dSOR to the side of the SOR. ΔSOR is implemented as an adjustment to the noise level from one flight path segment (e.g. Lmax,seg or LE,seg), as described in equation 2.7.28.

The SOR directivity function, in decibels, for turbofan-powered jet aircraft is given by the following equation:

 

For 90° ≤ Ψ < 180° then:

Image 59

(2.7.49)

The SOR directivity function, in decibels, for turboprop-powered aircraft is given by the following equation:

 

For 90° ≤ Ψ < 180° then:

Image 60

(2.7.50)

If the distance dSOR exceeds the normalising distance dSOR,0 , the directivity correction is multiplied by a correction factor to account for the fact that the directivity becomes less pronounced for greater distances from the aircraft; namely

Image 61

if dSOR ≤ dSOR,0

(2.7.51)

Image 62

if dSOR > dSOR,0

(2.7.52)

The normalising distance dSOR,0 equals 762 m (2 500 ft).

The Δ SOR function described above mostly captures the pronounced directivity effect of the initial portion of the takeoff roll at locations behind the SOR (because it is the closest to the receivers, with the highest jet velocity to aircraft speed ratio). However, the use of the hence established Δ SOR is “generalised” to positions behind each individual takeoff ground roll segment, so not only behind the start-of-roll point (in the case of takeoff). The established Δ SOR is not applied to positions ahead of individual takeoff ground roll segments, nor is it applied to positions behind or ahead of individual landing ground roll segments.

The parameters dSOR and Ψ are calculated relative to the start of each individual ground roll segment. The event level LSEG for a location behind a given takeoff ground-roll segment is calculated to comply with the formalism of the Δ SOR function: it is essentially calculated for the reference point located on the side of the start point of the segment, at the same distance dSOR as the actual point, and is further adjusted with Δ SOR to obtain the event level at the actual point.

Note: Formulas (2.7.53), (2.7.54) and (2.7.55) were removed in the latest amendment of this Annex. ’.

(17)

Section 2.8 is replaced by the following:

‘2.8   Exposure to noise

Determination of the area exposed to noise

The assessment of the area exposed to noise is based on noise assessment points at 4 m ± 0,2 above the ground, corresponding to the receiver points as defined in 2.5, 2.6 and 2.7, calculated on a grid for individual sources.

Grid points that are located inside buildings shall be assigned a noise level result by assigning the quietest nearby noise receiver points outside buildings, except for aircraft noise where the calculation is performed without considering the presence of buildings and in which case the noise receiver point falling within a building is directly used.

Depending on the grid resolution, the corresponding area is assigned to each calculation point in the grid. For example, with a 10 m × 10 m grid, each assessment point represents an area of 100 square metres that is exposed to the calculated noise level.

Assigning noise assessment points to buildings not containing dwellings

The assessment of the exposure of buildings not containing dwellings such as schools and hospitals to noise is based on noise assessment points at 4 ± 0,2 m above the ground, corresponding to the receiver points as defined in 2.5, 2.6 and 2.7

For the assessment of buildings not containing dwellings and exposed to aircraft noise, each building is associated to the noisiest noise receiver point falling within the building itself or, if not present, on the grid surrounding the building.

For the assessment of buildings not containing dwellings and exposed to land-based noise sources, receiver points are placed at approximately 0,1 m in front of building façades. Reflections from the façade being considered shall be excluded from the calculation. The building is then associated to the noisiest receiver point on its façades.

Determination of the dwellings and people living in dwellings exposed to noise

For the assessment of the noise exposure of dwellings and the exposure of people living in dwellings, only residential buildings shall be considered. No dwellings or people shall be assigned to other buildings without residential use such as buildings exclusively used as schools, hospitals, office buildings or factories. The assignment of the dwellings, and people living in dwellings, to the residential buildings shall be based on the latest official data (depending on the Member State’s relevant regulations).

The number of dwellings, and people living in dwellings, in residential buildings are important intermediate parameters for the estimation of the exposure to noise. Unfortunately, data on these parameters is not always available. Below, it is specified how these parameters can be derived from data more readily available.

Symbols used in the following are:

BA = base area of the building

DFS = dwelling floor space

DUFS = dwelling unit floor space

H = height of the building

FSI = dwelling floor space per person living in dwellings

Dw = number of dwellings

Inh = number of people living in dwellings

NF = number of floors

V = volume of residential buildings

For the calculation of the number of dwellings, and people living in dwellings, either the following Case 1 procedure or the Case 2 procedure shall be used, depending on the availability of data.

Case 1: the data on the number of dwellings and people living in dwellings is available

1A:

The number of people living in dwellings is known or has been estimated on the basis of the number of dwelling units. In this case the number of people living in dwellings for a building is the sum of the number of people living in all dwelling units in the building:

Image 63

(2.8.1)

1B:

The number of dwellings or people living in dwellings is only known for entities larger than a building, e.g., enumeration areas, city blocks, districts or even an entire municipality. In this case the number of dwellings, and people living in dwellings, in a building is estimated based on the volume of the building:

Image 64

(2.8.2a)


Image 65

(2.8.2b)

The index “total” here refers to the respective entity considered. The volume of the building is the product of its base area and its height:

Vbuilding = BAbuilding x Hbuilding

(2.8.3)

If the height of the building is not known, it shall be estimated based on the number of floors NFbuilding , assuming an average height per floor of 3 m:

Hbuilding = NFbuilding x 3m

(2.8.4)

If the number of floors is also not known, a default value for the number of floors, representative of the district or the borough, shall be used. The total volume of residential buildings in the entity considered Vtotal is calculated as the sum of the volumes of all residential buildings in the entity:

(2.8.5)

Image 66

(2.8.5)

Case 2: no data on the number of people living in dwellings is available

In this case, the number of people living in dwellings is estimated based on the average dwelling floor space per person living in dwellings FSI. If this parameter is not known, a default value shall be used.

2A:

The dwelling floor space is known on the basis of dwelling units.

In this case the number of people living in each dwelling unit is estimated as follows:

Image 67

(2.8.6)

The total number of people living in dwellings for the building can now be estimated as in Case 1A.

2B:

The dwelling floor space is known for the entire building, that is to say, the sum of the dwelling floor spaces of all dwelling units in the building is known.

In this case the number of people living in dwellings is estimated as follows:

Image 68

(2.8.7)

2C:

The dwelling floor space is known only for entities larger than a building, e.g., enumeration areas, city blocks, districts or even an entire municipality.

In this case the number of people living in dwellings for a building is estimated based on the volume of the building as described in Case 1B with the total number of people living in dwellings estimated as follows:

Image 69

(2.8.8)

2D:

The dwelling floor space is unknown.

In this case the number of people living in dwellings for a building is estimated as described in Case 2B with the dwelling floor space estimated as follows:

(2.8.9)

DFSbuilding = BAbuilding x 0,8 x NFbuilding

(2.8.9)

The factor 0,8 is the conversion factor gross floor area → dwelling floor space. If a different factor is known to be representative of the area it shall be used instead and clearly documented. If the number of floors of the building is not known, it shall be estimated based on the height of the building, Hbuilding , which typically results in a non-integer number of floors:

Image 70

(2.8.10)

If neither the height of the building nor the number of floors is known, a default value for the number of floors, representative of the district or the borough, shall be used.

Assigning noise assessment points to dwellings and people living in dwellings

The assessment of the exposure of dwellings, and people living in dwellings, to noise is based on noise assessment points at 4 ± 0,2 m above the ground, corresponding to the receiver points as defined in 2.5, 2.6 and 2.7.

For the calculation of the number of dwellings, and people living in dwellings for aircraft noise, all dwellings, and people living in dwellings, within a building are associated to the noisiest noise receiver point falling within the building itself or, if not present, on the grid surrounding the building.

For the calculation of the number of dwellings, and people living in dwellings for land-based noise sources, receiver points are placed at approximately 0,1 m in front of building façades of residential buildings. Reflections from the façade being considered shall be excluded from the calculation. Either the following Case 1 procedure or the Case 2 procedure shall be used to locate the receiver points.

Case 1: façades split up in regular intervals on each façade

Image 71
Figure 2.8.a Example of location of receiver points around a building following Case 1 procedure

(a)

Segments of a length of more than 5 m are split up into regular intervals of the longest possible length but less than or equal to 5 m. Receiver points are placed in the middle of each regular interval.

(b)

Remaining segments above a length of 2,5 m are represented by one receiver point in the middle of each segment.

(c)

Remaining adjacent segments with a total length of more than 5 m are treated as polyline objects in a manner similar to that described in (a) and (b).

Case 2: façades split up at set distance from start of polygon

Image 72
Figure 2.8.b Example of location of receiver points around a building following Case 2 procedure

(a)

Façades are considered separately or are split up every 5 m from the start position onwards, with a receiver position placed at the halfway distance of the façade or the 5m segment

(b)

The remaining section has its receiver point in its mid-point.

Assigning dwellings and people living in dwellings to receiver points

Where information on the location of dwellings within building footprints is available, that dwelling and the people living in that dwelling are assigned to the receiver point at the most exposed façade of that dwelling. For example, for detached houses, for semi-detached and terrace houses, or apartment buildings, where the internal division of the building is known, or for buildings with a floor size that indicates a single dwelling per floor level, or for buildings with a floor size and height that indicates a single dwelling per building.

Where no information on the location of dwellings within building footprints as explained above is available, one of the two following methods shall be used, as appropriate, on a building by building basis to estimate the exposure to noise of the dwellings and people in dwellings within the buildings.

(a)

Available information shows that dwellings are arranged within an apartment building such that they have a single façade exposed to noise

In this case, the allocation of the number of dwellings, and people living in dwellings, to receiver points, shall be weighted by the length of the represented façade according to the procedure under either Case 1 or Case 2, so that the sum of all receiver points represents the total number of dwellings and people living in dwellings assigned to the building.

(b)

Available information shows that dwellings are arranged within an apartment building such that they have more than one façade exposed to noise, or no information is available on how many facades of the dwellings are exposed to noise.

In this case, for each building, the set of associated receiver locations shall be split into a lower and upper half based on the median (*) value of the calculated assessment levels for each building. In case of odd number of receiver points, the procedure is applied excluding the receiver location with the lowest noise level.

For each receiver point in the upper half of the data set, the number of dwellings, and people living in dwellings, shall be distributed equally, so that the sum of all receiver points in the upper half of the data set represents the total number of dwellings and people living in dwellings. No dwellings or people living in dwellings will be assigned to receivers in the lower half of the data set (**).

(*)  The medium value is the value separating the higher half (50 %) from the lower half (50 %) of a data set."

(**)  The lower half of the data asset may be assimilated with the presence of relatively calm façades. In case it is known in advance, e.g. based on the location of buildings relative to the dominant noise sources, which receiver locations will give way to the highest / lowest noise levels, there is no need to calculate noise for the lower half.’."

(18)

Appendix D is amended as follows:

(a)

the first sub-paragraph under Table D-1 is replaced by the following:

‘The attenuation coefficients in Table D-1 may be assumed valid over reasonable ranges of temperature and humidity. However, to check whether adjustments may be necessary, SAE ARP-5534 should be used to calculate average atmospheric absorption coefficients for the average airport temperature T and relative humidity RH. Where, from a comparison of these with those in Table D-1, it is judged that adjustment is required the following methodology should be used.’;

(b)

in the third sub-paragraph under Table D-1, points 2 and 3 are replaced by the following:

‘2.

Next the corrected spectrum is adjusted to each of the ten standard NPD distances di using attenuation rates for both (i) the SAE AIR-1845 atmosphere; and (ii) the user-specified atmosphere (based on SAE ARP-5534).

(i)

For the SAE AIR-1845 atmosphere:

Ln,ref (di ) = Ln (dref )-20.lg(di/dref ) - α n,ref · di

(D-2)

(ii)

For the user-specified atmosphere:

Ln, 5534(T,RH,di ) = Ln (dref ) - 20.lg(di/dref ) - α n, 5534(T,RH) di

(D-3)

where α n,5534 is the coefficient of atmospheric absorption for the frequency band n (expressed in dB/m) calculated using SAE ARP-5534 with temperature T, and relative humidity RH.

3.

At each NPD distance di the two spectra are A-weighted and decibel-summed to determine the resulting A-weighted levels LA,5534 and LA,ref – which are then subtracted arithmetically:

Image 73

(D-4)’

(19)

Appendix F is amended as follows:

(a)

Table F-1 is replaced by the following:

‘Category

Coefficient

63

125

250

500

1 000

2 000

4 000

8 000

1

AR

83,1

89,2

87,7

93,1

100,1

96,7

86,8

76,2

BR

30,0

41,5

38,9

25,7

32,5

37,2

39,0

40,0

AP

97,9

92,5

90,7

87,2

84,7

88,0

84,4

77,1

BP

-1,3

7,2

7,7

8,0

8,0

8,0

8,0

8,0

2

AR

88,7

93,2

95,7

100,9

101,7

95,1

87,8

83,6

BR

30,0

35,8

32,6

23,8

30,1

36,2

38,3

40,1

AP

105,5

100,2

100,5

98,7

101,0

97,8

91,2

85,0

BP

-1,9

4,7

6,4

6,5

6,5

6,5

6,5

6,5

3

AR

91,7

96,2

98,2

104,9

105,1

98,5

91,1

85,6

BR

30,0

33,5

31,3

25,4

31,8

37,1

38,6

40,6

AP

108,8

104,2

103,5

102,9

102,6

98,5

93,8

87,5

BP

0,0

3,0

4,6

5,0

5,0

5,0

5,0

5,0

4a

AR

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

BR

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

AP

93,0

93,0

93,5

95,3

97,2

100,4

95,8

90,9

BP

4,2

7,4

9,8

11,6

15,7

18,9

20,3

20,6

4b

AR

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

BR

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

AP

99,9

101,9

96,7

94,4

95,2

94,7

92,1

88,6

BP

3,2

5,9

11,9

11,6

11,5

12,6

11,1

12,0

5

AR

 

 

 

 

 

 

 

 

BR

 

 

 

 

 

 

 

 

AP

 

 

 

 

 

 

 

 

BP

 

 

 

 

 

 

 

 

(b)

Table F-4 is replaced by the following:

‘Description

Min speed at which it is valid [km/h]

Maximum speed at which it is valid [km/h]

Category

αm

(63 Hz)

αm

(125 Hz)

αm

(250 Hz)

αm

(500 Hz)

αm

(1 kHz)

αm

(2 kHz)

αm

(4 kHz)

αm

(8 kHz)

βm

Reference road surface

--

--

1

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

2

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

3

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

1-layer ZOAB

50

130

1

0,0

5,4

4,3

4,2

-1,0

-3,2

-2,6

0,8

-6,5

2

7,9

4,3

5,3

-0,4

-5,2

-4,6

-3,0

-1,4

0,2

3

9,3

5,0

5,5

-0,4

-5,2

-4,6

-3,0

-1,4

0,2

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

2-layer ZOAB

50

130

1

1,6

4,0

0,3

-3,0

-4,0

-6,2

-4,8

-2,0

-3,0

2

7,3

2,0

-0,3

-5,2

-6,1

-6,0

-4,4

-3,5

4,7

3

8,3

2,2

-0,4

-5,2

-6,2

-6,1

-4,5

-3,5

4,7

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

2-layer ZOAB (fine)

80

130

1

-1,0

3,0

-1,5

-5,3

-6,3

-8,5

-5,3

-2,4

-0,1

2

7,9

0,1

-1,9

-5,9

-6,1

-6,8

-4,9

-3,8

-0,8

3

9,4

0,2

-1,9

-5,9

-6,1

-6,7

-4,8

-3,8

-0,9

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

SMA-NL5

40

80

1

10,3

-0,9

0,9

1,8

-1,8

-2,7

-2,0

-1,3

-1,6

2

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

3

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

SMA-NL8

40

80

1

6,0

0,3

0,3

0,0

-0,6

-1,2

-0,7

-0,7

-1,4

2

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

3

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Brushed down concrete

70

120

1

8,2

-0,4

2,8

2,7

2,5

0,8

-0,3

-0,1

1,4

2

0,3

4,5

2,5

-0,2

-0,1

-0,5

-0,9

-0,8

5,0

3

0,2

5,3

2,5

-0,2

-0,1

-0,6

-1,0

-0,9

5,5

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Optimised brushed down concrete

70

80

1

-0,2

-0,7

1,4

1,2

1,1

-1,6

-2,0

-1,8

1,0

2

-0,7

3,0

-2,0

-1,4

-1,8

-2,7

-2,0

-1,9

-6,6

3

-0,5

4,2

-1,9

-1,3

-1,7

-2,5

-1,8

-1,8

-6,6

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Fine broomed concrete

70

120

1

8,0

-0,7

4,8

2,2

1,2

2,6

1,5

-0,6

7,6

2

0,2

8,6

7,1

3,2

3,6

3,1

0,7

0,1

3,2

3

0,1

9,8

7,4

3,2

3,1

2,4

0,4

0,0

2,0

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Worked surface

50

130

1

8,3

2,3

5,1

4,8

4,1

0,1

-1,0

-0,8

-0,3

2

0,1

6,3

5,8

1,8

-0,6

-2,0

-1,8

-1,6

1,7

3

0,0

7,4

6,2

1,8

-0,7

-2,1

-1,9

-1,7

1,4

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Hard elements in herring- bone

30

60

1

27,0

16,2

14,7

6,1

3,0

-1,0

1,2

4,5

2,5

2

29,5

20,0

17,6

8,0

6,2

-1,0

3,1

5,2

2,5

3

29,4

21,2

18,2

8,4

5,6

-1,0

3,0

5,8

2,5

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Hard elements not in herring- bone

30

60

1

31,4

19,7

16,8

8,4

7,2

3,3

7,8

9,1

2,9

2

34,0

23,6

19,8

10,5

11,7

8,2

12,2

10,0

2,9

3

33,8

24,7

20,4

10,9

10,9

6,8

12,0

10,8

2,9

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Quiet hard elements

30

60

1

26,8

13,7

11,9

3,9

-1,8

-5,8

-2,7

0,2

-1,7

2

9,2

5,7

4,8

2,3

4,4

5,1

5,4

0,9

0,0

3

9,1

6,6

5,2

2,6

3,9

3,9

5,2

1,1

0,0

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Thin layer A

40

130

1

10,4

0,7

-0,6

-1,2

-3,0

-4,8

-3,4

-1,4

-2,9

2

13,8

5,4

3,9

-0,4

-1,8

-2,1

-0,7

-0,2

0,5

3

14,1

6,1

4,1

-0,4

-1,8

-2,1

-0,7

-0,2

0,3

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Thin layer B

40

130

1

6,8

-1,2

-1,2

-0,3

-4,9

-7,0

-4,8

-3,2

-1,8

2

13,8

5,4

3,9

-0,4

-1,8

-2,1

-0,7

-0,2

0,5

3

14,1

6,1

4,1

-0,4

-1,8

-2,1

-0,7

-0,2

0,3

4a/4b

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0 ’

(20)

Appendix G is amended as follows:

(a)

in Table G-1, the second table is replaced by the following:

‘Lr,TR,i

Wavelength

Rail Roughness

E

M

EN ISO 3095:2013 (Well maintained and very smooth)

Average network (Normally maintained smooth)

2 000 mm

17,1

35,0

1 600 mm

17,1

31,0

1 250 mm

17,1

28,0

1 000 mm

17,1

25,0

800 mm

17,1

23,0

630 mm

17,1

20,0

500 mm

17,1

17,0

400 mm

17,1

13,5

315 mm

15,0

10,5

250 mm

13,0

9,0

200 mm

11,0

6,5

160 mm

9,0

5,5

125 mm

7,0

5,0

100 mm

4,9

3,5

80 mm

2,9

2,0

63 mm

0,9

0,1

50 mm

–1,1

-0,2

40 mm

–3,2

-0,3

31,5 mm

–5,0

-0,8

25 mm

–5,6

-3,0

20 mm

–6,2

-5,0

16 mm

–6,8

-7,0

12,5 mm

–7,4

-8,0

10 mm

–8,0

-9,0

8 mm

–8,6

-10,0

6,3 mm

–9,2

-12,0

5 mm

–9,8

-13,0

4 mm

–10,4

-14,0

3,15 mm

–11,0

-15,0

2,5 mm

–11,6

-16,0

2 mm

–12,2

-17,0

1,6 mm

–12,8

-18,0

1,25 mm

–13,4

-19,0

1 mm

–14,0

-19,0

0,8 mm

–14,0

-19,0 ’

(b)

Table G-2 is replaced by the following:

‘A3,i

1.1.

Wavelength

Wheel load 50 kN – wheel diameter 360 mm

Wheel load 50 kN – wheel diameter 680 mm

Wheel load 50 kN – wheel diameter 920 mm

Wheel load 25 kN – wheel diameter 920 mm

Wheel load 100 kN – wheel diameter 920 mm

2 000 mm

0,0

0,0

0,0

0,0

0,0

1 600 mm

0,0

0,0

0,0

0,0

0,0

1 250 mm

0,0

0,0

0,0

0,0

0,0

1 000 mm

0,0

0,0

0,0

0,0

0,0

800 mm

0,0

0,0

0,0

0,0

0,0

630 mm

0,0

0,0

0,0

0,0

0,0

500 mm

0,0

0,0

0,0

0,0

0,0

400 mm

0,0

0,0

0,0

0,0

0,0

315 mm

0,0

0,0

0,0

0,0

0,0

250 mm

0,0

0,0

0,0

0,0

0,0

200 mm

0,0

0,0

0,0

0,0

0,0

160 mm

0,0

0,0

0,0

0,0

-0,1

125 mm

0,0

0,0

-0,1

0,0

-0,2

100 mm

0,0

-0,1

-0,1

0,0

-0,3

80 mm

-0,1

-0,2

-0,3

-0,1

-0,6

63 mm

-0,2

-0,3

-0,6

-0,3

-1,0

50 mm

-0,3

-0,7

-1,1

-0,5

-1,8

40 mm

-0,6

-1,2

-1,3

-1,1

-3,2

31,5 mm

-1,0

-2,0

-3,5

-1,8

-5,4

25 mm

-1,8

-4,1

-5,3

-3,3

-8,7

20 mm

-3,2

-6,0

-8,0

-5,3

-12,2

16 mm

-5,4

-9,2

-12,0

-7,9

-16,7

12,5 mm

-8,7

-13,8

-16,8

-12,8

-17,7

10 mm

-12,2

-17,2

-17,7

-16,8

-17,8

8 mm

-16,7

-17,7

-18,0

-17,7

-20,7

6,3 mm

-17,7

-18,6

-21,5

-18,2

-22,1

5 mm

-17,8

-21,5

-21,8

-20,5

-22,8

4 mm

-20,7

-22,3

-22,8

-22,0

-24,0

3,15 mm

-22,1

-23,1

-24,0

-22,8

-24,5

2,5 mm

-22,8

-24,4

-24,5

-24,2

-24,7

2 mm

-24,0

-24,5

-25,0

-24,5

-27,0

1,6 mm

-24,5

-25,0

-27,3

-25,0

-27,8

1,25 mm

-24,7

-28,0

-28,1

-27,4

-28,6

1 mm

-27,0

-28,8

-28,9

-28,2

-29,4

0,8 mm

-27,8

-29,6

-29,7

-29,0

-30,2 ’

(c)

the first table of Table G-3 is replaced by the following:

LH,TR,i

Frequency

Track base / Rail pad type

M/S

M/M

M/H

B/S

B/M

B/H

W

D

Mono-block sleeper on soft rail pad

Mono-block sleeper on medium stiffness rail pad

Mono-block on hard rail pad

Bi-block sleeper on soft rail pad

Bi-block sleeper on medium stiffness rail pad

Bi-block sleeper on hard rail pad

Wooden sleepers

Direct fastening on bridges

50 Hz

53,3

50,9

50,1

50,9

50,0

49,8

44,0

75,4

63 Hz

59,3

57,8

57,2

56,6

56,1

55,9

51,0

77,4

80 Hz

67,2

66,5

66,3

64,3

64,1

64,0

59,9

81,4

100 Hz

75,9

76,8

77,2

72,3

72,5

72,5

70,8

87,1

125 Hz

79,2

80,9

81,6

75,4

75,8

75,9

75,1

88,0

160 Hz

81,8

83,3

84,0

78,5

79,1

79,4

76,9

89,7

200 Hz

84,2

85,8

86,5

81,8

83,6

84,4

77,2

83,4

250 Hz

88,6

90,0

90,7

86,6

88,7

89,7

80,9

87,7

315 Hz

91,0

91,6

92,1

89,1

89,6

90,2

85,3

89,8

400 Hz

94,5

93,9

94,3

91,9

89,7

90,2

92,5

97,5

500 Hz

97,0

95,6

95,8

94,5

90,6

90,8

97,0

99,0

630 Hz

99,2

97,4

97,0

97,5

93,8

93,1

98,7

100,8

800 Hz

104,0

101,7

100,3

104,0

100,6

97,9

102,8

104,9

1 000 Hz

107,1

104,4

102,5

107,9

104,7

101,1

105,4

111,8

1 250 Hz

108,3

106,0

104,2

108,9

106,3

103,4

106,5

113,9

1 600 Hz

108,5

106,8

105,4

108,8

107,1

105,4

106,4

115,5

2 000 Hz

109,7

108,3

107,1

109,8

108,8

107,7

107,5

114,9

2 500 Hz

110,0

108,9

107,9

110,2

109,3

108,5

108,1

118,2

3 150 Hz

110,0

109,1

108,2

110,1

109,4

108,7

108,4

118,3

4 000 Hz

110,0

109,4

108,7

110,1

109,7

109,1

108,7

118,4

5 000 Hz

110,3

109,9

109,4

110,3

110,0

109,6

109,1

118,9

6 300 Hz

110,0

109,9

109,7

109,9

109,8

109,6

109,1

117,5

8 000 Hz

110,1

110,3

110,4

110,0

110,0

109,9

109,5

117,9

10 000 Hz

110,6

111,0

111,4

110,4

110,5

110,6

110,2

118,6 ’

(d)

Table G-3 is amended as follows:

in column 1 of section ‘LH, VEH, i ’:

the 11th row is replaced by the following: ‘315 Hz’;

the 21st row is replaced by the following: ‘ 3 150 Hz’;

the 24th row is replaced by the following: ‘ 6 300 Hz’,

in column 1 of section ‘LH, VEH, SUP, i ’:

the 11th row is replaced by the following: ‘315 Hz’;

the 21st row is replaced by the following: ‘ 3 150 Hz’;

the 24th row is replaced by the following: ‘ 6 300 Hz’;

(e)

Table G-4 is replaced by the following:

‘LR,IMPACT,i

Wavelength

Single switch/joint/crossing/100 m

2 000 mm

22,0

1 600 mm

22,0

1 250 mm

22,0

1 000 mm

22,0

800 mm

22,0

630 mm

20,0

500 mm

16,0

400 mm

15,0

315 mm

14,0

250 mm

15,0

200 mm

14,0

160 mm

12,0

125 mm

11,0

100 mm

10,0

80 mm

9,0

63 mm

8,0

50 mm

6,0

40 mm

3,0

31,5 mm

2,0

25 mm

-3,0

20 mm

-8,0

16 mm

-13,0

12,5 mm

-17,0

10 mm

-19,0

8 mm

-22,0

6,3 mm

-25,0

5 mm

-26,0

4 mm

-32,0

3,15 mm

-35,0

2,5 mm

-40,0

2 mm

-43,0

1,6 mm

-45,0

1,25 mm

-47,0

1 mm

-49,0

0,8 mm

-50,0 ’

(f)

in Table G-5:

 

the 1st column, 12th row is replaced by the following: ‘315 Hz’;

 

the 1st column, 22nd row is replaced by the following: ‘ 3 150 Hz’;

 

the 1st column, 25th row is replaced by the following: ‘ 6 300 Hz’;

 

the 4th column, 25th row is replaced by the following: ‘81,4’;

 

the 5th column, 25th row is replaced by the following: ‘80,7’;

(g)

in Table G-6, in column 1:

 

the 11th row is replaced by the following: ‘315 Hz’;

 

the 21st row is replaced by the following: ‘ 3 150 Hz’;

 

the 24th row is replaced by the following: ‘ 6 300 Hz’;

(h)

Table G-7 is replaced by the following:

LH, bridge ,i

Frequency

+10 dB(A)

+15 dB(A)

50 Hz

85,2

90,1

63 Hz

87,1

92,1

80 Hz

91,0

96,0

100 Hz

94,0

99,5

125 Hz

94,4

99,9

160 Hz

96,0

101,5

200 Hz

92,5

99,6

250 Hz

96,7

103,8

315 Hz

97,4

104,5

400 Hz

99,4

106,5

500 Hz

100,7

107,8

630 Hz

102,5

109,6

800 Hz

107,1

116,1

1 000 Hz

109,8

118,8

1 250 Hz

112,0

120,9

1 600 Hz

107,2

109,5

2 000 Hz

106,8

109,1

2 500 Hz

107,3

109,6

3 150 Hz

99,3

102,0

4 000 Hz

91,4

94,1

5 000 Hz

86,9

89,6

6 300 Hz

79,7

83,6

8 000 Hz

75,1

79,0

10 000 Hz

70,8

74,7 ’

(21)

Appendix I is amended as follows:

(a)

the title of the appendix is replaced by the following:

Appendix I: Database for aircraft source – Aircraft Noise and Performance (ANP) data ’;

(b)

in Table I-1, the rows starting with the row

‘F10062

A

D-42

0

0

0,4731

0,1565’

up to the last row of the table are replaced by the following:

‘737800

A

A_00

 

 

 

0,0596977

737800

A

A_01

 

 

 

0,066122

737800

A

A_05

 

 

 

0,078996

737800

A

A_15

 

 

 

0,111985

737800

A

A_30

 

 

0,383611

0,117166

7378MAX

A

A_00

0

0

0

0,076682

7378MAX

A

A_00

 

 

 

0,056009

7378MAX

A

A_01

0

0

0

0,091438

7378MAX

A

A_01

 

 

 

0,066859

7378MAX

A

A_05

0

0

0

0,106627

7378MAX

A

A_05

 

 

 

0,077189

7378MAX

A

A_15

0

0

0,395117

0,165812

7378MAX

A

A_15

 

 

 

0,106525

7378MAX

A

A_30

 

 

0,375612

0,116638

7378MAX

A

A_40

0

0

0,375646

0,189672

7378MAX

D

D_00

0

0

0

0,074217

7378MAX

D

D_00

 

 

 

0,05418

7378MAX

D

D_01

0

0

0

0,085464

7378MAX

D

D_01

 

 

 

0,062526

7378MAX

D

D_05

0,00823

0,41332

0

0,101356

7378MAX

D

D_05

0,0079701

0,40898

 

0,074014

A350-941

A

A_1_U

0

0

0

0,05873

A350-941

A

A_1_U

 

 

 

0,056319

A350-941

A

A_2_D

0

0

0

0,083834

A350-941

A

A_2_D

 

 

 

0,081415

A350-941

A

A_2_U

0

0

0

0,06183

A350-941

A

A_2_U

 

 

 

0,059857

A350-941

A

A_3_D

0

0

0,219605

0,092731

A350-941

A

A_3_D

 

 

0,225785

0,092557

A350-941

A

A_FULL_D

0

0

0,214867

0,106381

A350-941

A

A_FULL_D

 

 

0,214862

0,106058

A350-941

A

A_ZERO

0

0

0

0,049173

A350-941

A

A_ZERO

 

 

 

0,048841

A350-941

D

D_1

0

0

0

0,052403

A350-941

D

D_1_U

 

 

 

0,058754

A350-941

D

D_1+F

0,00325

0,234635

0

0,06129

A350-941

D

D_1+F_D

0,002722

0,233179

 

0,098533

A350-941

D

D_1+F_U

 

 

 

0,062824

A350-941

D

D_ZERO

0

0

0

0,048142

A350-941

D

D_ZERO

 

 

 

0,048126

ATR72

A

15-A-G

 

 

 

0,0803

ATR72

A

33-A-G

 

 

0,55608

0,105

ATR72

A

ZERO-A

 

 

 

0,09027

ATR72

D

15

0,013155

0,538

 

0,08142

ATR72

D

INTR

 

 

 

0,07826

ATR72

D

ZERO

 

 

 

0,0708

F10062

A

D-42

0

0

0,4731

0,1565

F10062

A

INT2

 

 

 

0,0904

F10062

A

TO

 

 

 

0,0683

F10062

A

U-INT

 

 

 

0,1124

F10062

D

INT2

 

 

 

0,0904

F10062

D

TO

0,0122

0,5162

 

0,0683

F10062

D

ZERO

 

 

 

0,0683

F10065

A

D-42

 

 

0,4731

0,1565

F10065

A

INT2

 

 

 

0,0911

F10065

A

TO

 

 

 

0,0693

F10065

A

U-INT

 

 

 

0,1129

F10065

D

INT2

 

 

 

0,0911

F10065

D

TO

0,0123

0,521

 

0,0693

F10065

D

ZERO

 

 

 

0,0693

F28MK2

A

D-42

 

 

0,5334

0,1677

F28MK2

A

INT2

 

 

 

0,1033

F28MK2

A

U-INTR

 

 

 

0,1248

F28MK2

A

ZERO

 

 

 

0,0819

F28MK2

D

6

0,0171

0,6027

 

0,0793

F28MK2

D

INT2

 

 

 

0,1033

F28MK2

D

ZERO

 

 

 

0,0819

F28MK4

A

D-42

 

 

0,5149

0,1619

F28MK4

A

INT2

 

 

 

0,0971

F28MK4

A

U-INTR

 

 

 

0,1187

F28MK4

A

ZERO

 

 

 

0,0755

F28MK4

D

6

0,01515

0,5731

 

0,0749

F28MK4

D

INT2

 

 

 

0,0971

F28MK4

D

ZERO

 

 

 

0,0755

FAL20

A

D-25

 

 

0,804634

0,117238

FAL20

A

D-40

 

 

0,792624

0,136348

FAL20

A

INTR

 

 

 

0,084391

FAL20

A

ZERO

 

 

 

0,07

FAL20

D

10

0,035696

0,807797

 

0,098781

FAL20

D

INTR

 

 

 

0,084391

FAL20

D

ZERO

 

 

 

0,07

GII

A

L-0-U

 

 

 

0,0751

GII

A

L-10-U

 

 

 

0,0852

GII

A

L-20-D

 

 

 

0,1138

GII

A

L-39-D

 

 

0,5822

0,1742

GII

D

T-0-U

 

 

 

0,0814

GII

D

T-10-U

 

 

 

0,0884

GII

D

T-20-D

0,02

0,634

 

0,1159

GIIB

A

L-0-U

 

 

 

0,0722

GIIB

A

L-10-U

 

 

 

0,0735

GIIB

A

L-20-D

 

 

 

0,1091

GIIB

A

L-39-D

 

 

0,562984

0,1509

GIIB

D

T-0-U

 

 

 

0,0738

GIIB

D

T-10-U

 

 

 

0,0729

GIIB

D

T-20-D

0,0162

0,583

 

0,1063

GIV

A

L-0-U

 

 

 

0,06

GIV

A

L-20-D

 

 

 

0,1063

GIV

A

L-39-D

 

 

0,5805

0,1403

GIV

D

T-0-U

 

 

 

0,0586

GIV

D

T-10-U

 

 

 

0,0666

GIV

D

T-20-D

0,0146

0,5798

 

0,1035

GIV

D

T-20-U

 

 

 

0,0797

GV

A

L-0-U

 

 

 

0,0617

GV

A

L-20-D

 

 

 

0,0974

GV

A

L-20-U

 

 

 

0,0749

GV

A

L-39-D

 

 

0,4908

0,1328

GV

D

T-0-U

 

 

 

0,058

GV

D

T-10-U

 

 

 

0,0606

GV

D

T-20-D

0,01178

0,516

 

0,0953

GV

D

T-20-U

 

 

 

0,0743

HS748A

A

D-30

 

 

0,45813

0,13849

HS748A

A

D-INTR

 

 

 

0,106745

HS748A

A

INTR

 

 

 

0,088176

HS748A

A

ZERO

 

 

 

0,075

HS748A

D

INTR

 

 

 

0,088176

HS748A

D

TO

0,012271

0,542574

 

0,101351

HS748A

D

ZERO

 

 

 

0,075

IA1125

A

D-40

 

 

0,967478

0,136393

IA1125

A

D-INTR

 

 

 

0,118618

IA1125

A

INTR

 

 

 

0,085422

IA1125

A

ZERO

 

 

 

0,07

IA1125

D

12

0,040745

0,963488

 

0,100843

IA1125

D

INTR

 

 

 

0,085422

IA1125

D

ZERO

 

 

 

0,07

L1011

A

10

 

 

 

0,093396

L1011

A

D-33

 

 

0,286984

0,137671

L1011

A

D-42

 

 

0,256389

0,155717

L1011

A

ZERO

 

 

 

0,06243

L1011

D

10

0,004561

0,265314

 

0,093396

L1011

D

22

0,004759

0,251916

 

0,105083

L1011

D

INTR

 

 

 

0,07959

L1011

D

ZERO

 

 

 

0,06243

L10115

A

10

 

 

 

0,093396

L10115

A

D-33

 

 

0,262728

0,140162

L10115

A

D-42

 

 

0,256123

0,155644

L10115

A

ZERO

 

 

 

0,06243

L10115

D

10

0,004499

0,265314

 

0,093396

L10115

D

22

0,004695

0,251916

 

0,105083

L10115

D

INTR

 

 

 

0,07959

L10115

D

ZERO

 

 

 

0,06243

L188

A

D-100

 

 

0,436792

0,174786

L188

A

D-78-%

 

 

0,456156

0,122326

L188

A

INTR

 

 

 

0,120987

L188

A

ZERO

 

 

 

0,082

L188

D

39-%

0,009995

0,420533

 

0,142992

L188

D

78-%

0,010265

0,404302

 

0,159974

L188

D

INTR

 

 

 

0,120987

L188

D

ZERO

 

 

 

0,082

LEAR25

A

10

 

 

 

0,09667

LEAR25

A

D-40

 

 

1,28239

0,176632

LEAR25

A

D-INTR

 

 

 

0,149986

LEAR25

A

ZERO

 

 

 

0,07

LEAR25

D

10

 

 

 

0,09667

LEAR25

D

20

0,082866

1,27373

 

0,12334

LEAR25

D

ZERO

 

 

 

0,07

LEAR35

A

10

 

 

 

0,089112

LEAR35

A

D-40

 

 

1,08756

0,150688

LEAR35

A

D-INTR

 

 

 

0,129456

LEAR35

A

ZERO

 

 

 

0,07

LEAR35

D

10

 

 

 

0,089112

LEAR35

D

20

0,043803

1,05985

 

0,108224

LEAR35

D

ZERO

 

 

 

0,07

MD11GE

D

10

0,003812

0,2648

 

0,0843

MD11GE

D

15

0,003625

0,2578

 

0,0891

MD11GE

D

20

0,003509

0,2524

 

0,0947

MD11GE

D

25

0,003443

0,2481

 

0,1016

MD11GE

D

0/EXT

 

 

 

0,0692

MD11GE

D

0/RET

 

 

 

0,0551

MD11GE

D

ZERO

 

 

 

0,0551

MD11PW

D

10

0,003829

0,265

 

0,08425

MD11PW

D

15

0,003675

0,2576

 

0,08877

MD11PW

D

20

0,003545

0,2526

 

0,09472

MD11PW

D

25

0,003494

0,2487

 

0,1018

MD11PW

D

0/EXT

 

 

 

0,0691

MD11PW

D

0/RET

 

 

 

0,05512

MD11PW

D

ZERO

 

 

 

0,05512

MD81

D

11

0,009276

0,4247

 

0,07719

MD81

D

INT1

 

 

 

0,07643

MD81

D

INT2

 

 

 

0,06313

MD81

D

INT3

 

 

 

0,06156

MD81

D

INT4

 

 

 

0,06366

MD81

D

T_15

0,009369

0,420798

 

0,0857

MD81

D

T_INT

 

 

 

0,0701

MD81

D

T_ZERO

 

 

 

0,061

MD81

D

ZERO

 

 

 

0,06761

MD82

D

11

0,009248

0,4236

 

0,07969

MD82

D

INT1

 

 

 

0,07625

MD82

D

INT2

 

 

 

0,06337

MD82

D

INT3

 

 

 

0,06196

MD82

D

INT4

 

 

 

0,0634

MD82

D

T_15

0,009267

0,420216

 

0,086

MD82

D

T_INT

 

 

 

0,065

MD82

D

T_ZERO

 

 

 

0,061

MD82

D

ZERO

 

 

 

0,06643

MD83

D

11

0,009301

0,4227

 

0,0798

MD83

D

INT1

 

 

 

0,07666

MD83

D

INT2

 

 

 

0,0664

MD83

D

INT3

 

 

 

0,06247

MD83

D

INT4

 

 

 

0,06236

MD83

D

T_15

0,009384

0,420307

 

0,086

MD83

D

T_INT

 

 

 

0,0664

MD83

D

T_ZERO

 

 

 

0,0611

MD83

D

ZERO

 

 

 

0,06573

MD9025

A

D-28

 

 

0,4118

0,1181

MD9025

A

D-40

 

 

0,4003

0,1412

MD9025

A

U-0

 

 

0,4744

0,0876

MD9025

D

EXT/06

0,010708

0,458611

 

0,070601

MD9025

D

EXT/11

0,009927

0,441118

 

0,073655

MD9025

D

EXT/18

0,009203

0,421346

 

0,083277

MD9025

D

EXT/24

0,008712

0,408301

 

0,090279

MD9025

D

RET/0

 

 

 

0,05186

MD9028

A

D-28

 

 

0,4118

0,1181

MD9028

A

D-40

 

 

0,4003

0,1412

MD9028

A

U-0

 

 

0,4744

0,0876

MD9028

D

EXT/06

0,010993

0,463088

 

0,070248

MD9028

D

EXT/11

0,010269

0,446501

 

0,072708

MD9028

D

EXT/18

0,009514

0,426673

 

0,082666

MD9028

D

EXT/24

0,008991

0,413409

 

0,090018

MD9028

D

RET/0

 

 

 

0,05025

MU3001

A

1

 

 

 

0,08188

MU3001

A

D-30

 

 

1,07308

0,147487

MU3001

A

D-INTR

 

 

 

0,114684

MU3001

A

ZERO

 

 

 

0,07

MU3001

D

1

0,065703

1,1529

 

0,08188

MU3001

D

10

0,055318

1,0729

 

0,09285

MU3001

D

ZERO

 

 

 

0,07

PA30

A

27-A

 

 

1,316667

0,104586

PA30

A

ZERO-A

 

 

 

0,078131

PA30

D

15-D

0,100146

1,166667

 

0,154071

PA30

D

ZERO-D

 

 

 

0,067504

PA42

A

30-DN

 

 

1,09213

0,14679

PA42

A

ZERO-A

 

 

 

0,087856

PA42

D

ZER-DN

0,06796

1,011055

 

0,08088

PA42

D

ZERO

 

 

 

0,087856

PA42

D

ZERO-C

 

 

 

0,139096

PA42

D

ZERO-T

 

 

 

0,07651

SD330

A

D-15

 

 

0,746802

0,109263

SD330

A

D-35

 

 

0,702872

0,143475

SD330

A

INTR

 

 

 

0,106596

SD330

A

ZERO

 

 

 

0,075

SD330

D

10

0,031762

0,727556

 

0,138193

SD330

D

INTR

 

 

 

0,106596

SD330

D

ZERO

 

 

 

0,075

SF340

A

5

 

 

 

0,105831

SF340

A

D-35

 

 

0,75674

0,147912

SF340

A

D-INTR

 

 

 

0,111456

SF340

A

ZERO

 

 

 

0,075

SF340

D

5

 

 

 

0,105831

SF340

D

15

0,026303

0,746174

 

0,136662

SF340

D

ZERO

 

 

 

0,075’

(c)

in Table I-2, the rows corresponding to the AIRCFTID 737700 and 737800 are correspondingly replaced by:

‘737700

Boeing 737-700/CFM56-7B24

Jet

2

Large

Commercial

154 500

129 200

4 445

24 000

3

CF567B

CNT (lb)

206

104

Wing

737800

Boeing 737-800 / CFM56-7B26

Jet

2

Large

Commercial

174 200

146 300

5 435

26 300

3

CF567B

CNT (lb)

206

104

Wing’

(d)

in Table I-2, the following rows are added:

‘7378MAX

Boeing 737 MAX 8 / CFM Leap1B-27

Jet

2

Large

Commercial

181 200

152 800

4 965

26 400

4

7378MAX

CNT (lb)

216

103

Wing

A350-941

Airbus A350-941 / RR Trent XWB-84

Jet

2

Heavy

Commercial

610 681

456 356

6 558

84 200

4

A350-941

CNT (lb)

239

139

Wing

ATR72

Avions de Transport Regional ATR 72-212A / PW127F

Turboprop

2

Large

Commercial

50 710

49 270

3 360

7 587

4

ATR72

CNT (lb)

240

140

Prop’

(e)

in Table I-3, the following rows are added:

‘737800

DEFAULT

1

Descend-Idle

A_00

6 000

248,93

3

 

 

 

737800

DEFAULT

2

Level-Idle

A_00

3 000

249,5

 

 

25 437

 

737800

DEFAULT

3

Level-Idle

A_01

3 000

187,18

 

 

3 671

 

737800

DEFAULT

4

Level-Idle

A_05

3 000

174,66

 

 

5 209

 

737800

DEFAULT

5

Descend-Idle

A_15

3 000

151,41

3

 

 

 

737800

DEFAULT

6

Descend

A_30

2 817

139,11

3

 

 

 

737800

DEFAULT

7

Land

A_30

 

 

 

393,8

 

 

737800

DEFAULT

8

Decelerate

A_30

 

139

 

 

3 837,5

40

737800

DEFAULT

9

Decelerate

A_30

 

30

 

 

0

10

737MAX8

DEFAULT

1

Descend-Idle

A_00

6 000

249,2

3

 

 

 

737MAX8

DEFAULT

2

Level-Idle

A_00

3 000

249,7

 

 

24 557

 

737MAX8

DEFAULT

3

Level-Idle

A_01

3 000

188,5

 

 

4 678

 

737MAX8

DEFAULT

4

Level-Idle

A_05

3 000

173,7

 

 

4 907

 

737MAX8

DEFAULT

5

Descend-Idle

A_15

3 000

152

3

 

 

 

737MAX8

DEFAULT

6

Descend

A_30

2 817

139

3

 

 

 

737MAX8

DEFAULT

7

Land

A_30

 

 

 

393,8

 

 

737MAX8

DEFAULT

8

Decelerate

A_30

 

139

 

 

3 837,5

40

737MAX8

DEFAULT

9

Decelerate

A_30

 

30

 

 

0

10

A350-941

DEFAULT1

1

Descend-Idle

A_ZERO

6 000

250

2,74

 

 

 

A350-941

DEFAULT1

2

Level-Idle

A_ZERO

3 000

250

 

 

26 122

 

A350-941

DEFAULT1

3

Level-Idle

A_1_U

3 000

188,6

 

 

6 397,6

 

A350-941

DEFAULT1

4

Descend-Idle

A_1_U

3 000

168,4

3

 

 

 

A350-941

DEFAULT1

5

Descend-Idle

A_2_D

2 709

161,9

3

 

 

 

A350-941

DEFAULT1

6

Descend-Idle

A_3_D

2 494

155,2

3

 

 

 

A350-941

DEFAULT1

7

Descend

A_FULL_D

2 180

137,5

3

 

 

 

A350-941

DEFAULT1

8

Descend

A_FULL_D

50

137,5

3

 

 

 

A350-941

DEFAULT1

9

Land

A_FULL_D

 

 

 

556,1

 

 

A350-941

DEFAULT1

10

Decelerate

A_FULL_D

 

137,5

 

 

5 004,9

10

A350-941

DEFAULT1

11

Decelerate

A_FULL_D

 

30

 

 

0

10

A350-941

DEFAULT2

1

Descend-Idle

A_ZERO

6 000

250

2,74

 

 

 

A350-941

DEFAULT2

2

Level-Idle

A_ZERO

3 000

250

 

 

26 122

 

A350-941

DEFAULT2

3

Level

A_1_U

3 000

188,6

 

 

20 219,8

 

A350-941

DEFAULT2

4

Level-Idle

A_1_U

3 000

188,6

 

 

6 049,9

 

A350-941

DEFAULT2

5

Descend-Idle

A_1_U

3 000

168,3

3

 

 

 

A350-941

DEFAULT2

6

Descend-Idle

A_2_D

2 709

161,8

3

 

 

 

A350-941

DEFAULT2

7

Descend

A_FULL_D

2 180

137,5

3

 

 

 

A350-941

DEFAULT2

8

Descend

A_FULL_D

50

137,5

3

 

 

 

A350-941

DEFAULT2

9

Land

A_FULL_D

 

 

 

556,1

 

 

A350-941

DEFAULT2

10

Decelerate

A_FULL_D

 

137,5

 

 

5 004,9

10

A350-941

DEFAULT2

11

Decelerate

A_FULL_D

 

30

 

 

0

10

ATR72

DEFAULT

1

Descend

ZERO-A

6 000

238

3

 

 

 

ATR72

DEFAULT

2

Level-Decel

ZERO-A

3 000

238

 

 

17 085

 

ATR72

DEFAULT

3

Level-Decel

15-A-G

3 000

158,3

 

 

3 236

 

ATR72

DEFAULT

4

Level

15-A-G

3 000

139

 

 

3 521

 

ATR72

DEFAULT

5

Level

33-A-G

3 000

139

 

 

3 522

 

ATR72

DEFAULT

6

Descend-Decel

33-A-G

3 000

139

3

 

 

 

ATR72

DEFAULT

7

Descend

33-A-G

2 802

117,1

3

 

 

 

ATR72

DEFAULT

8

Descend

33-A-G

50

117,1

3

 

 

 

ATR72

DEFAULT

9

Land

33-A-G

 

 

 

50

 

 

ATR72

DEFAULT

10

Decelerate

33-A-G

 

114,2

 

 

1 218

75,9

ATR72

DEFAULT

11

Decelerate

33-A-G

 

30

 

 

0

5,7’

(f)

in Table I-4 (part 1), the following rows are added:

‘737MAX8

DEFAULT

1

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

DEFAULT

1

2

Climb

MaxTakeoff

D_05

1 000

 

 

 

737MAX8

DEFAULT

1

3

Accelerate

MaxClimb

D_05

 

1 336

174

 

737MAX8

DEFAULT

1

4

Accelerate

MaxClimb

D_01

 

1 799

205

 

737MAX8

DEFAULT

1

5

Climb

MaxClimb

D_00

3 000

 

 

 

737MAX8

DEFAULT

1

6

Accelerate

MaxClimb

D_00

 

1 681

250

 

737MAX8

DEFAULT

1

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

DEFAULT

1

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

DEFAULT

1

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

DEFAULT

2

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

DEFAULT

2

2

Climb

MaxTakeoff

D_05

1 000

 

 

 

737MAX8

DEFAULT

2

3

Accelerate

MaxClimb

D_05

 

1 284

176

 

737MAX8

DEFAULT

2

4

Accelerate

MaxClimb

D_01

 

1 651

208

 

737MAX8

DEFAULT

2

5

Climb

MaxClimb

D_00

3 000

 

 

 

737MAX8

DEFAULT

2

6

Accelerate

MaxClimb

D_00

 

1 619

250

 

737MAX8

DEFAULT

2

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

DEFAULT

2

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

DEFAULT

2

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

DEFAULT

3

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

DEFAULT

3

2

Climb

MaxTakeoff

D_05

1 000

 

 

 

737MAX8

DEFAULT

3

3

Accelerate

MaxClimb

D_05

 

1 229

177

 

737MAX8

DEFAULT

3

4

Accelerate

MaxClimb

D_01

 

1 510

210

 

737MAX8

DEFAULT

3

5

Climb

MaxClimb

D_00

3 000

 

 

 

737MAX8

DEFAULT

3

6

Accelerate

MaxClimb

D_00

 

1 544

250

 

737MAX8

DEFAULT

3

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

DEFAULT

3

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

DEFAULT

3

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

DEFAULT

4

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

DEFAULT

4

2

Climb

MaxTakeoff

D_05

1 000

 

 

 

737MAX8

DEFAULT

4

3

Accelerate

MaxClimb

D_05

 

1 144

181

 

737MAX8

DEFAULT

4

4

Accelerate

MaxClimb

D_01

 

1 268

213

 

737MAX8

DEFAULT

4

5

Climb

MaxClimb

D_00

3 000

 

 

 

737MAX8

DEFAULT

4

6

Accelerate

MaxClimb

D_00

 

1 414

250

 

737MAX8

DEFAULT

4

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

DEFAULT

4

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

DEFAULT

4

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

DEFAULT

5

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

DEFAULT

5

2

Climb

MaxTakeoff

D_05

1 000

 

 

 

737MAX8

DEFAULT

5

3

Accelerate

MaxClimb

D_05

 

1 032

184

 

737MAX8

DEFAULT

5

4

Accelerate

MaxClimb

D_01

 

1 150

217

 

737MAX8

DEFAULT

5

5

Climb

MaxClimb

D_00

3 000

 

 

 

737MAX8

DEFAULT

5

6

Accelerate

MaxClimb

D_00

 

1 292

250

 

737MAX8

DEFAULT

5

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

DEFAULT

5

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

DEFAULT

5

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

DEFAULT

6

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

DEFAULT

6

2

Climb

MaxTakeoff

D_05

1 000

 

 

 

737MAX8

DEFAULT

6

3

Accelerate

MaxClimb

D_05

 

1 001

185

 

737MAX8

DEFAULT

6

4

Accelerate

MaxClimb

D_01

 

1 120

219

 

737MAX8

DEFAULT

6

5

Climb

MaxClimb

D_00

3 000

 

 

 

737MAX8

DEFAULT

6

6

Accelerate

MaxClimb

D_00

 

1 263

250

 

737MAX8

DEFAULT

6

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

DEFAULT

6

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

DEFAULT

6

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

DEFAULT

M

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

DEFAULT

M

2

Climb

MaxTakeoff

D_05

1 000

 

 

 

737MAX8

DEFAULT

M

3

Accelerate

MaxClimb

D_05

 

951

188

 

737MAX8

DEFAULT

M

4

Accelerate

MaxClimb

D_01

 

1 058

221

 

737MAX8

DEFAULT

M

5

Climb

MaxClimb

D_00

3 000

 

 

 

737MAX8

DEFAULT

M

6

Accelerate

MaxClimb

D_00

 

1 196

250

 

737MAX8

DEFAULT

M

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

DEFAULT

M

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

DEFAULT

M

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

ICAO_A

1

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

ICAO_A

1

2

Climb

MaxTakeoff

D_05

1 500

 

 

 

737MAX8

ICAO_A

1

3

Climb

MaxClimb

D_05

3 000

 

 

 

737MAX8

ICAO_A

1

4

Accelerate

MaxClimb

D_05

 

1 300

174

 

737MAX8

ICAO_A

1

5

Accelerate

MaxClimb

D_01

 

1 667

205

 

737MAX8

ICAO_A

1

6

Accelerate

MaxClimb

D_00

 

2 370

250

 

737MAX8

ICAO_A

1

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

ICAO_A

1

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

ICAO_A

1

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

ICAO_A

2

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

ICAO_A

2

2

Climb

MaxTakeoff

D_05

1 500

 

 

 

737MAX8

ICAO_A

2

3

Climb

MaxClimb

D_05

3 000

 

 

 

737MAX8

ICAO_A

2

4

Accelerate

MaxClimb

D_05

 

1 243

174

 

737MAX8

ICAO_A

2

5

Accelerate

MaxClimb

D_01

 

1 524

207

 

737MAX8

ICAO_A

2

6

Accelerate

MaxClimb

D_00

 

2 190

250

 

737MAX8

ICAO_A

2

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

ICAO_A

2

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

ICAO_A

2

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

ICAO_A

3

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

ICAO_A

3

2

Climb

MaxTakeoff

D_05

1 500

 

 

 

737MAX8

ICAO_A

3

3

Climb

MaxClimb

D_05

3 000

 

 

 

737MAX8

ICAO_A

3

4

Accelerate

MaxClimb

D_05

 

1 190

176

 

737MAX8

ICAO_A

3

5

Accelerate

MaxClimb

D_01

 

1 331

210

 

737MAX8

ICAO_A

3

6

Accelerate

MaxClimb

D_00

 

2 131

250

 

737MAX8

ICAO_A

3

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

ICAO_A

3

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

ICAO_A

3

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

ICAO_A

4

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

ICAO_A

4

2

Climb

MaxTakeoff

D_05

1 500

 

 

 

737MAX8

ICAO_A

4

3

Climb

MaxClimb

D_05

3 000

 

 

 

737MAX8

ICAO_A

4

4

Accelerate

MaxClimb

D_05

 

1 098

180

 

737MAX8

ICAO_A

4

5

Accelerate

MaxClimb

D_01

 

1 221

211

 

737MAX8

ICAO_A

4

6

Accelerate

MaxClimb

D_00

 

1 883

250

 

737MAX8

ICAO_A

4

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

ICAO_A

4

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

ICAO_A

4

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

ICAO_A

5

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

ICAO_A

5

2

Climb

MaxTakeoff

D_05

1 500

 

 

 

737MAX8

ICAO_A

5

3

Climb

MaxClimb

D_05

3 000

 

 

 

737MAX8

ICAO_A

5

4

Accelerate

MaxClimb

D_05

 

988

183

 

737MAX8

ICAO_A

5

5

Accelerate

MaxClimb

D_01

 

1 101

216

 

737MAX8

ICAO_A

5

6

Accelerate

MaxClimb

D_00

 

1 730

250

 

737MAX8

ICAO_A

5

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

ICAO_A

5

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

ICAO_A

5

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

ICAO_A

6

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

ICAO_A

6

2

Climb

MaxTakeoff

D_05

1 500

 

 

 

737MAX8

ICAO_A

6

3

Climb

MaxClimb

D_05

3 000

 

 

 

737MAX8

ICAO_A

6

4

Accelerate

MaxClimb

D_05

 

964

185

 

737MAX8

ICAO_A

6

5

Accelerate

MaxClimb

D_01

 

1 073

217

 

737MAX8

ICAO_A

6

6

Accelerate

MaxClimb

D_00

 

1 588

250

 

737MAX8

ICAO_A

6

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

ICAO_A

6

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

ICAO_A

6

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

ICAO_A

M

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

ICAO_A

M

2

Climb

MaxTakeoff

D_05

1 500

 

 

 

737MAX8

ICAO_A

M

3

Climb

MaxClimb

D_05

3 000

 

 

 

737MAX8

ICAO_A

M

4

Accelerate

MaxClimb

D_05

 

911

187

 

737MAX8

ICAO_A

M

5

Accelerate

MaxClimb

D_01

 

1 012

220

 

737MAX8

ICAO_A

M

6

Accelerate

MaxClimb

D_00

 

1 163

250

 

737MAX8

ICAO_A

M

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

ICAO_A

M

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

ICAO_A

M

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

ICAO_B

1

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

ICAO_B

1

2

Climb

MaxTakeoff

D_05

1 000

 

 

 

737MAX8

ICAO_B

1

3

Accelerate

MaxTakeoff

D_01

 

1 734

178

 

737MAX8

ICAO_B

1

4

Accelerate

MaxTakeoff

D_00

 

2 595

205

 

737MAX8

ICAO_B

1

5

Climb

MaxClimb

D_00

3 000

 

 

 

737MAX8

ICAO_B

1

6

Accelerate

MaxClimb

D_00

 

1 671

250

 

737MAX8

ICAO_B

1

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

ICAO_B

1

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

ICAO_B

1

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

ICAO_B

2

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

ICAO_B

2

2

Climb

MaxTakeoff

D_05

1 000

 

 

 

737MAX8

ICAO_B

2

3

Accelerate

MaxTakeoff

D_01

 

1 682

179

 

737MAX8

ICAO_B

2

4

Accelerate

MaxTakeoff

D_00

 

2 477

208

 

737MAX8

ICAO_B

2

5

Climb

MaxClimb

D_00

3 000

 

 

 

737MAX8

ICAO_B

2

6

Accelerate

MaxClimb

D_00

 

1 610

250

 

737MAX8

ICAO_B

2

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

ICAO_B

2

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

ICAO_B

2

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

ICAO_B

3

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

ICAO_B

3

2

Climb

MaxTakeoff

D_05

1 000

 

 

 

737MAX8

ICAO_B

3

3

Accelerate

MaxTakeoff

D_01

 

1 616

180

 

737MAX8

ICAO_B

3

4

Accelerate

MaxTakeoff

D_00

 

2 280

210

 

737MAX8

ICAO_B

3

5

Climb

MaxClimb

D_00

3 000

 

 

 

737MAX8

ICAO_B

3

6

Accelerate

MaxClimb

D_00

 

1 545

250

 

737MAX8

ICAO_B

3

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

ICAO_B

3

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

ICAO_B

3

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

ICAO_B

4

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

ICAO_B

4

2

Climb

MaxTakeoff

D_05

1 000

 

 

 

737MAX8

ICAO_B

4

3

Accelerate

MaxTakeoff

D_01

 

1 509

184

 

737MAX8

ICAO_B

4

4

Accelerate

MaxTakeoff

D_00

 

2 103

214

 

737MAX8

ICAO_B

4

5

Climb

MaxClimb

D_00

3 000

 

 

 

737MAX8

ICAO_B

4

6

Accelerate

MaxClimb

D_00

 

1 589

250

 

737MAX8

ICAO_B

4

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

ICAO_B

4

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

ICAO_B

4

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

ICAO_B

5

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

ICAO_B

5

2

Climb

MaxTakeoff

D_05

1 000

 

 

 

737MAX8

ICAO_B

5

3

Accelerate

MaxTakeoff

D_01

 

1 388

188

 

737MAX8

ICAO_B

5

4

Accelerate

MaxTakeoff

D_00

 

1 753

220

 

737MAX8

ICAO_B

5

5

Climb

MaxClimb

D_00

3 000

 

 

 

737MAX8

ICAO_B

5

6

Accelerate

MaxClimb

D_00

 

1 295

250

 

737MAX8

ICAO_B

5

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

ICAO_B

5

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

ICAO_B

5

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

ICAO_B

6

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

ICAO_B

6

2

Climb

MaxTakeoff

D_05

1 000

 

 

 

737MAX8

ICAO_B

6

3

Accelerate

MaxTakeoff

D_01

 

1 345

188

 

737MAX8

ICAO_B

6

4

Accelerate

MaxTakeoff

D_00

 

1 634

220

 

737MAX8

ICAO_B

6

5

Climb

MaxClimb

D_00

3 000

 

 

 

737MAX8

ICAO_B

6

6

Accelerate

MaxClimb

D_00

 

1 262

250

 

737MAX8

ICAO_B

6

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

ICAO_B

6

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

ICAO_B

6

9

Climb

MaxClimb

D_00

10 000

 

 

 

737MAX8

ICAO_B

M

1

Takeoff

MaxTakeoff

D_05

 

 

 

 

737MAX8

ICAO_B

M

2

Climb

MaxTakeoff

D_05

1 000

 

 

 

737MAX8

ICAO_B

M

3

Accelerate

MaxTakeoff

D_01

 

1 287

191

 

737MAX8

ICAO_B

M

4

Accelerate

MaxTakeoff

D_00

 

1 426

225

 

737MAX8

ICAO_B

M

5

Climb

MaxClimb

D_00

3 000

 

 

 

737MAX8

ICAO_B

M

6

Accelerate

MaxClimb

D_00

 

1 196

250

 

737MAX8

ICAO_B

M

7

Climb

MaxClimb

D_00

5 500

 

 

 

737MAX8

ICAO_B

M

8

Climb

MaxClimb

D_00

7 500

 

 

 

737MAX8

ICAO_B

M

9

Climb

MaxClimb

D_00

10 000 ’

 

 

 

(g)

in Table I-4 (part 2), the following rows are added:

‘A350-941

DEFAULT

1

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

DEFAULT

1

2

Climb

MaxTakeoff

D_1+F_D

1 000

 

 

 

A350-941

DEFAULT

1

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 726,5

170,7

60

A350-941

DEFAULT

1

4

Accelerate

MaxTakeoff

D_1_U

 

1 862,6

197,2

60

A350-941

DEFAULT

1

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

DEFAULT

1

6

Accelerate

MaxClimb

D_ZERO

 

1 658

250

60

A350-941

DEFAULT

1

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

DEFAULT

2

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

DEFAULT

2

2

Climb

MaxTakeoff

D_1+F_D

1 000

 

 

 

A350-941

DEFAULT

2

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 699,9

173,1

60

A350-941

DEFAULT

2

4

Accelerate

MaxTakeoff

D_1_U

 

1 812,6

198,6

60

A350-941

DEFAULT

2

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

DEFAULT

2

6

Accelerate

MaxClimb

D_ZERO

 

1 604,5

250

60

A350-941

DEFAULT

2

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

DEFAULT

3

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

DEFAULT

3

2

Climb

MaxTakeoff

D_1+F_D

1 000

 

 

 

A350-941

DEFAULT

3

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 662,2

175,6

60

A350-941

DEFAULT

3

4

Accelerate

MaxTakeoff

D_1_U

 

1 762,3

200,1

60

A350-941

DEFAULT

3

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

DEFAULT

3

6

Accelerate

MaxClimb

D_ZERO

 

1 551,6

250

60

A350-941

DEFAULT

3

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

DEFAULT

4

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

DEFAULT

4

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

DEFAULT

4

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 586,1

179,9

60

A350-941

DEFAULT

4

4

Accelerate

MaxTakeoff

D_1_U

 

1 679,8

202,7

60

A350-941

DEFAULT

4

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

DEFAULT

4

6

Accelerate

MaxClimb

D_ZERO

 

1 465,3

250

60

A350-941

DEFAULT

4

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

DEFAULT

5

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

DEFAULT

5

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

DEFAULT

5

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 491,7

185,3

60

A350-941

DEFAULT

5

4

Accelerate

MaxTakeoff

D_1_U

 

1 586,9

206,4

60

A350-941

DEFAULT

5

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

DEFAULT

5

6

Accelerate

MaxClimb

D_ZERO

 

1 365,5

250

60

A350-941

DEFAULT

5

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

DEFAULT

6

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

DEFAULT

6

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

DEFAULT

6

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 399,5

191,1

60

A350-941

DEFAULT

6

4

Accelerate

MaxTakeoff

D_1_U

 

1 494,1

210,4

60

A350-941

DEFAULT

6

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

DEFAULT

6

6

Accelerate

MaxClimb

D_ZERO

 

1 268,2

250

60

A350-941

DEFAULT

6

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

DEFAULT

7

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

DEFAULT

7

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

DEFAULT

7

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 314

197

60

A350-941

DEFAULT

7

4

Accelerate

MaxTakeoff

D_1_U

 

1 407,1

214,7

60

A350-941

DEFAULT

7

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

DEFAULT

7

6

Accelerate

MaxClimb

D_ZERO

 

1 176,3

250

60

A350-941

DEFAULT

7

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

DEFAULT

8

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

DEFAULT

8

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

DEFAULT

8

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 233,3

203,4

60

A350-941

DEFAULT

8

4

Accelerate

MaxTakeoff

D_1_U

 

1 325,3

219,6

60

A350-941

DEFAULT

8

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

DEFAULT

8

6

Accelerate

MaxClimb

D_ZERO

 

1 089,2

250

60

A350-941

DEFAULT

8

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

DEFAULT

M

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

DEFAULT

M

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

DEFAULT

M

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 185,1

207,6

60

A350-941

DEFAULT

M

4

Accelerate

MaxTakeoff

D_1_U

 

1 275,6

222,9

60

A350-941

DEFAULT

M

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

DEFAULT

M

6

Accelerate

MaxClimb

D_ZERO

 

1 036,7

250

60

A350-941

DEFAULT

M

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_A

1

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_A

1

2

Climb

MaxTakeoff

D_1+F_U

1 500

 

 

 

A350-941

ICAO_A

1

3

Climb

MaxClimb

D_1+F_U

3 000

 

 

 

A350-941

ICAO_A

1

4

Accelerate

MaxClimb

D_1+F_U

 

1 323,2

171

60

A350-941

ICAO_A

1

5

Accelerate

MaxClimb

D_1_U

 

1 353,1

189,5

60

A350-941

ICAO_A

1

6

Accelerate

MaxClimb

D_ZERO

 

1 514,1

213,7

60

A350-941

ICAO_A

1

7

Accelerate

MaxClimb

D_ZERO

 

1 673,8

250

60

A350-941

ICAO_A

1

8

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_A

2

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_A

2

2

Climb

MaxTakeoff

D_1+F_U

1 500

 

 

 

A350-941

ICAO_A

2

3

Climb

MaxClimb

D_1+F_U

3 000

 

 

 

A350-941

ICAO_A

2

4

Accelerate

MaxClimb

D_1+F_U

 

1 265,7

173,4

60

A350-941

ICAO_A

2

5

Accelerate

MaxClimb

D_1_U

 

1 315,1

191,2

60

A350-941

ICAO_A

2

6

Accelerate

MaxClimb

D_ZERO

 

1 466,2

214,5

60

A350-941

ICAO_A

2

7

Accelerate

MaxClimb

D_ZERO

 

1 619,3

250

60

A350-941

ICAO_A

2

8

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_A

3

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_A

3

2

Climb

MaxTakeoff

D_1+F_U

1 500

 

 

 

A350-941

ICAO_A

3

3

Climb

MaxClimb

D_1+F_U

3 000

 

 

 

A350-941

ICAO_A

3

4

Accelerate

MaxClimb

D_1+F_U

 

1 214,3

175,9

60

A350-941

ICAO_A

3

5

Accelerate

MaxClimb

D_1_U

 

1 276,7

193

60

A350-941

ICAO_A

3

6

Accelerate

MaxClimb

D_ZERO

 

1 418,4

215,4

60

A350-941

ICAO_A

3

7

Accelerate

MaxClimb

D_ZERO

 

1 565

250

60

A350-941

ICAO_A

3

8

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_A

4

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_A

4

2

Climb

MaxTakeoff

D_1+F_U

1 500

 

 

 

A350-941

ICAO_A

4

3

Climb

MaxClimb

D_1+F_U

3 000

 

 

 

A350-941

ICAO_A

4

4

Accelerate

MaxClimb

D_1+F_U

 

1 138,4

180,3

60

A350-941

ICAO_A

4

5

Accelerate

MaxClimb

D_1_U

 

1 212,8

196,1

60

A350-941

ICAO_A

4

6

Accelerate

MaxClimb

D_ZERO

 

1 340,5

217

60

A350-941

ICAO_A

4

7

Accelerate

MaxClimb

D_ZERO

 

1 476,4

250

60

A350-941

ICAO_A

4

8

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_A

5

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_A

5

2

Climb

MaxTakeoff

D_1+F_U

1 500

 

 

 

A350-941

ICAO_A

5

3

Climb

MaxClimb

D_1+F_U

3 000

 

 

 

A350-941

ICAO_A

5

4

Accelerate

MaxClimb

D_1+F_U

 

1 066,3

185,8

60

A350-941

ICAO_A

5

5

Accelerate

MaxClimb

D_1_U

 

1 139,9

200,3

60

A350-941

ICAO_A

5

6

Accelerate

MaxClimb

D_ZERO

 

1 252,3

219,5

60

A350-941

ICAO_A

5

7

Accelerate

MaxClimb

D_ZERO

 

1 374,5

250

60

A350-941

ICAO_A

5

8

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_A

6

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_A

6

2

Climb

MaxTakeoff

D_1+F_U

1 500

 

 

 

A350-941

ICAO_A

6

3

Climb

MaxClimb

D_1+F_U

3 000

 

 

 

A350-941

ICAO_A

6

4

Accelerate

MaxClimb

D_1+F_U

 

994,4

191,7

60

A350-941

ICAO_A

6

5

Accelerate

MaxClimb

D_1_U

 

1 064,9

204,8

60

A350-941

ICAO_A

6

6

Accelerate

MaxClimb

D_ZERO

 

1 165,9

222,3

60

A350-941

ICAO_A

6

7

Accelerate

MaxClimb

D_ZERO

 

1 275,1

250

60

A350-941

ICAO_A

6

8

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_A

7

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_A

7

2

Climb

MaxTakeoff

D_1+F_U

1 500

 

 

 

A350-941

ICAO_A

7

3

Climb

MaxClimb

D_1+F_U

3 000

 

 

 

A350-941

ICAO_A

7

4

Accelerate

MaxClimb

D_1+F_U

 

927

197,8

60

A350-941

ICAO_A

7

5

Accelerate

MaxClimb

D_1_U

 

994,4

209,7

60

A350-941

ICAO_A

7

6

Accelerate

MaxClimb

D_ZERO

 

1 085,3

225,7

60

A350-941

ICAO_A

7

7

Accelerate

MaxClimb

D_ZERO

 

1 181

250

60

A350-941

ICAO_A

7

8

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_A

8

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_A

8

2

Climb

MaxTakeoff

D_1+F_U

1 500

 

 

 

A350-941

ICAO_A

8

3

Climb

MaxClimb

D_1+F_U

3 000

 

 

 

A350-941

ICAO_A

8

4

Accelerate

MaxClimb

D_1+F_U

 

862,4

204,1

60

A350-941

ICAO_A

8

5

Accelerate

MaxClimb

D_1_U

 

927,4

214,9

60

A350-941

ICAO_A

8

6

Accelerate

MaxClimb

D_ZERO

 

1 009,2

229,4

60

A350-941

ICAO_A

8

7

Accelerate

MaxClimb

D_ZERO

 

1 091,2

250

60

A350-941

ICAO_A

8

8

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_A

M

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_A

M

2

Climb

MaxTakeoff

D_1+F_U

1 500

 

 

 

A350-941

ICAO_A

M

3

Climb

MaxClimb

D_1+F_U

3 000

 

 

 

A350-941

ICAO_A

M

4

Accelerate

MaxClimb

D_1+F_U

 

823,3

208,3

60

A350-941

ICAO_A

M

5

Accelerate

MaxClimb

D_1_U

 

886,5

218,4

60

A350-941

ICAO_A

M

6

Accelerate

MaxClimb

D_ZERO

 

963,5

232

60

A350-941

ICAO_A

M

7

Accelerate

MaxClimb

D_ZERO

 

1 036,9

250

60

A350-941

ICAO_A

M

8

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_B

1

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_B

1

2

Climb

MaxTakeoff

D_1+F_D

1 000

 

 

 

A350-941

ICAO_B

1

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 726,5

170,7

60

A350-941

ICAO_B

1

4

Accelerate

MaxTakeoff

D_1_U

 

1 862,6

197,2

60

A350-941

ICAO_B

1

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

ICAO_B

1

6

Accelerate

MaxClimb

D_ZERO

 

1 658

250

60

A350-941

ICAO_B

1

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_B

2

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_B

2

2

Climb

MaxTakeoff

D_1+F_D

1 000

 

 

 

A350-941

ICAO_B

2

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 699,9

173,1

60

A350-941

ICAO_B

2

4

Accelerate

MaxTakeoff

D_1_U

 

1 812,6

198,6

60

A350-941

ICAO_B

2

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

ICAO_B

2

6

Accelerate

MaxClimb

D_ZERO

 

1 604,5

250

60

A350-941

ICAO_B

2

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_B

3

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_B

3

2

Climb

MaxTakeoff

D_1+F_D

1 000

 

 

 

A350-941

ICAO_B

3

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 662,2

175,6

60

A350-941

ICAO_B

3

4

Accelerate

MaxTakeoff

D_1_U

 

1 762,3

200,1

60

A350-941

ICAO_B

3

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

ICAO_B

3

6

Accelerate

MaxClimb

D_ZERO

 

1 551,6

250

60

A350-941

ICAO_B

3

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_B

4

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_B

4

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

ICAO_B

4

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 586,1

179,9

60

A350-941

ICAO_B

4

4

Accelerate

MaxTakeoff

D_1_U

 

1 679,8

202,7

60

A350-941

ICAO_B

4

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

ICAO_B

4

6

Accelerate

MaxClimb

D_ZERO

 

1 465,3

250

60

A350-941

ICAO_B

4

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_B

5

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_B

5

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

ICAO_B

5

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 491,7

185,3

60

A350-941

ICAO_B

5

4

Accelerate

MaxTakeoff

D_1_U

 

1 586,9

206,4

60

A350-941

ICAO_B

5

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

ICAO_B

5

6

Accelerate

MaxClimb

D_ZERO

 

1 365,5

250

60

A350-941

ICAO_B

5

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_B

6

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_B

6

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

ICAO_B

6

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 399,5

191,1

60

A350-941

ICAO_B

6

4

Accelerate

MaxTakeoff

D_1_U

 

1 494,1

210,4

60

A350-941

ICAO_B

6

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

ICAO_B

6

6

Accelerate

MaxClimb

D_ZERO

 

1 268,2

250

60

A350-941

ICAO_B

6

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_B

7

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_B

7

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

ICAO_B

7

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 314

197

60

A350-941

ICAO_B

7

4

Accelerate

MaxTakeoff

D_1_U

 

1 407,1

214,7

60

A350-941

ICAO_B

7

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

ICAO_B

7

6

Accelerate

MaxClimb

D_ZERO

 

1 176,3

250

60

A350-941

ICAO_B

7

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_B

8

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_B

8

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

ICAO_B

8

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 233,3

203,4

60

A350-941

ICAO_B

8

4

Accelerate

MaxTakeoff

D_1_U

 

1 325,3

219,6

60

A350-941

ICAO_B

8

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

ICAO_B

8

6

Accelerate

MaxClimb

D_ZERO

 

1 089,2

250

60

A350-941

ICAO_B

8

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_B

M

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_B

M

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

ICAO_B

M

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 185,1

207,6

60

A350-941

ICAO_B

M

4

Accelerate

MaxTakeoff

D_1_U

 

1 275,6

222,9

60

A350-941

ICAO_B

M

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

ICAO_B

M

6

Accelerate

MaxClimb

D_ZERO

 

1 036,7

250

60

A350-941

ICAO_B

M

7

Climb

MaxClimb

D_ZERO

10 000 ’

 

 

 

(h)

in Table I-4 (part 3), the following rows are added:

‘A350-941

DEFAULT

1

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

DEFAULT

1

2

Climb

MaxTakeoff

D_1+F_D

1 000

 

 

 

A350-941

DEFAULT

1

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 726,5

170,7

60

A350-941

DEFAULT

1

4

Accelerate

MaxTakeoff

D_1_U

 

1 862,6

197,2

60

A350-941

DEFAULT

1

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

DEFAULT

1

6

Accelerate

MaxClimb

D_ZERO

 

1 658

250

60

A350-941

DEFAULT

1

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

DEFAULT

2

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

DEFAULT

2

2

Climb

MaxTakeoff

D_1+F_D

1 000

 

 

 

A350-941

DEFAULT

2

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 699,9

173,1

60

A350-941

DEFAULT

2

4

Accelerate

MaxTakeoff

D_1_U

 

1 812,6

198,6

60

A350-941

DEFAULT

2

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

DEFAULT

2

6

Accelerate

MaxClimb

D_ZERO

 

1 604,5

250

60

A350-941

DEFAULT

2

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

DEFAULT

3

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

DEFAULT

3

2

Climb

MaxTakeoff

D_1+F_D

1 000

 

 

 

A350-941

DEFAULT

3

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 662,2

175,6

60

A350-941

DEFAULT

3

4

Accelerate

MaxTakeoff

D_1_U

 

1 762,3

200,1

60

A350-941

DEFAULT

3

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

DEFAULT

3

6

Accelerate

MaxClimb

D_ZERO

 

1 551,6

250

60

A350-941

DEFAULT

3

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

DEFAULT

4

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

DEFAULT

4

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

DEFAULT

4

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 586,1

179,9

60

A350-941

DEFAULT

4

4

Accelerate

MaxTakeoff

D_1_U

 

1 679,8

202,7

60

A350-941

DEFAULT

4

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

DEFAULT

4

6

Accelerate

MaxClimb

D_ZERO

 

1 465,3

250

60

A350-941

DEFAULT

4

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

DEFAULT

5

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

DEFAULT

5

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

DEFAULT

5

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 491,7

185,3

60

A350-941

DEFAULT

5

4

Accelerate

MaxTakeoff

D_1_U

 

1 586,9

206,4

60

A350-941

DEFAULT

5

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

DEFAULT

5

6

Accelerate

MaxClimb

D_ZERO

 

1 365,5

250

60

A350-941

DEFAULT

5

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

DEFAULT

6

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

DEFAULT

6

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

DEFAULT

6

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 399,5

191,1

60

A350-941

DEFAULT

6

4

Accelerate

MaxTakeoff

D_1_U

 

1 494,1

210,4

60

A350-941

DEFAULT

6

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

DEFAULT

6

6

Accelerate

MaxClimb

D_ZERO

 

1 268,2

250

60

A350-941

DEFAULT

6

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

DEFAULT

7

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

DEFAULT

7

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

DEFAULT

7

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 314

197

60

A350-941

DEFAULT

7

4

Accelerate

MaxTakeoff

D_1_U

 

1 407,1

214,7

60

A350-941

DEFAULT

7

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

DEFAULT

7

6

Accelerate

MaxClimb

D_ZERO

 

1 176,3

250

60

A350-941

DEFAULT

7

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

DEFAULT

8

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

DEFAULT

8

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

DEFAULT

8

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 233,3

203,4

60

A350-941

DEFAULT

8

4

Accelerate

MaxTakeoff

D_1_U

 

1 325,3

219,6

60

A350-941

DEFAULT

8

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

DEFAULT

8

6

Accelerate

MaxClimb

D_ZERO

 

1 089,2

250

60

A350-941

DEFAULT

8

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

DEFAULT

M

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

DEFAULT

M

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

DEFAULT

M

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 185,1

207,6

60

A350-941

DEFAULT

M

4

Accelerate

MaxTakeoff

D_1_U

 

1 275,6

222,9

60

A350-941

DEFAULT

M

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

DEFAULT

M

6

Accelerate

MaxClimb

D_ZERO

 

1 036,7

250

60

A350-941

DEFAULT

M

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_A

1

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_A

1

2

Climb

MaxTakeoff

D_1+F_U

1 500

 

 

 

A350-941

ICAO_A

1

3

Climb

MaxClimb

D_1+F_U

3 000

 

 

 

A350-941

ICAO_A

1

4

Accelerate

MaxClimb

D_1+F_U

 

1 323,2

171

60

A350-941

ICAO_A

1

5

Accelerate

MaxClimb

D_1_U

 

1 353,1

189,5

60

A350-941

ICAO_A

1

6

Accelerate

MaxClimb

D_ZERO

 

1 514,1

213,7

60

A350-941

ICAO_A

1

7

Accelerate

MaxClimb

D_ZERO

 

1 673,8

250

60

A350-941

ICAO_A

1

8

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_A

2

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_A

2

2

Climb

MaxTakeoff

D_1+F_U

1 500

 

 

 

A350-941

ICAO_A

2

3

Climb

MaxClimb

D_1+F_U

3 000

 

 

 

A350-941

ICAO_A

2

4

Accelerate

MaxClimb

D_1+F_U

 

1 265,7

173,4

60

A350-941

ICAO_A

2

5

Accelerate

MaxClimb

D_1_U

 

1 315,1

191,2

60

A350-941

ICAO_A

2

6

Accelerate

MaxClimb

D_ZERO

 

1 466,2

214,5

60

A350-941

ICAO_A

2

7

Accelerate

MaxClimb

D_ZERO

 

1 619,3

250

60

A350-941

ICAO_A

2

8

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_A

3

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_A

3

2

Climb

MaxTakeoff

D_1+F_U

1 500

 

 

 

A350-941

ICAO_A

3

3

Climb

MaxClimb

D_1+F_U

3 000

 

 

 

A350-941

ICAO_A

3

4

Accelerate

MaxClimb

D_1+F_U

 

1 214,3

175,9

60

A350-941

ICAO_A

3

5

Accelerate

MaxClimb

D_1_U

 

1 276,7

193

60

A350-941

ICAO_A

3

6

Accelerate

MaxClimb

D_ZERO

 

1 418,4

215,4

60

A350-941

ICAO_A

3

7

Accelerate

MaxClimb

D_ZERO

 

1 565

250

60

A350-941

ICAO_A

3

8

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_A

4

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_A

4

2

Climb

MaxTakeoff

D_1+F_U

1 500

 

 

 

A350-941

ICAO_A

4

3

Climb

MaxClimb

D_1+F_U

3 000

 

 

 

A350-941

ICAO_A

4

4

Accelerate

MaxClimb

D_1+F_U

 

1 138,4

180,3

60

A350-941

ICAO_A

4

5

Accelerate

MaxClimb

D_1_U

 

1 212,8

196,1

60

A350-941

ICAO_A

4

6

Accelerate

MaxClimb

D_ZERO

 

1 340,5

217

60

A350-941

ICAO_A

4

7

Accelerate

MaxClimb

D_ZERO

 

1 476,4

250

60

A350-941

ICAO_A

4

8

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_A

5

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_A

5

2

Climb

MaxTakeoff

D_1+F_U

1 500

 

 

 

A350-941

ICAO_A

5

3

Climb

MaxClimb

D_1+F_U

3 000

 

 

 

A350-941

ICAO_A

5

4

Accelerate

MaxClimb

D_1+F_U

 

1 066,3

185,8

60

A350-941

ICAO_A

5

5

Accelerate

MaxClimb

D_1_U

 

1 139,9

200,3

60

A350-941

ICAO_A

5

6

Accelerate

MaxClimb

D_ZERO

 

1 252,3

219,5

60

A350-941

ICAO_A

5

7

Accelerate

MaxClimb

D_ZERO

 

1 374,5

250

60

A350-941

ICAO_A

5

8

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_A

6

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_A

6

2

Climb

MaxTakeoff

D_1+F_U

1 500

 

 

 

A350-941

ICAO_A

6

3

Climb

MaxClimb

D_1+F_U

3 000

 

 

 

A350-941

ICAO_A

6

4

Accelerate

MaxClimb

D_1+F_U

 

994,4

191,7

60

A350-941

ICAO_A

6

5

Accelerate

MaxClimb

D_1_U

 

1 064,9

204,8

60

A350-941

ICAO_A

6

6

Accelerate

MaxClimb

D_ZERO

 

1 165,9

222,3

60

A350-941

ICAO_A

6

7

Accelerate

MaxClimb

D_ZERO

 

1 275,1

250

60

A350-941

ICAO_A

6

8

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_A

7

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_A

7

2

Climb

MaxTakeoff

D_1+F_U

1 500

 

 

 

A350-941

ICAO_A

7

3

Climb

MaxClimb

D_1+F_U

3 000

 

 

 

A350-941

ICAO_A

7

4

Accelerate

MaxClimb

D_1+F_U

 

927

197,8

60

A350-941

ICAO_A

7

5

Accelerate

MaxClimb

D_1_U

 

994,4

209,7

60

A350-941

ICAO_A

7

6

Accelerate

MaxClimb

D_ZERO

 

1 085,3

225,7

60

A350-941

ICAO_A

7

7

Accelerate

MaxClimb

D_ZERO

 

1 181

250

60

A350-941

ICAO_A

7

8

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_A

8

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_A

8

2

Climb

MaxTakeoff

D_1+F_U

1 500

 

 

 

A350-941

ICAO_A

8

3

Climb

MaxClimb

D_1+F_U

3 000

 

 

 

A350-941

ICAO_A

8

4

Accelerate

MaxClimb

D_1+F_U

 

862,4

204,1

60

A350-941

ICAO_A

8

5

Accelerate

MaxClimb

D_1_U

 

927,4

214,9

60

A350-941

ICAO_A

8

6

Accelerate

MaxClimb

D_ZERO

 

1 009,2

229,4

60

A350-941

ICAO_A

8

7

Accelerate

MaxClimb

D_ZERO

 

1 091,2

250

60

A350-941

ICAO_A

8

8

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_A

M

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_A

M

2

Climb

MaxTakeoff

D_1+F_U

1 500

 

 

 

A350-941

ICAO_A

M

3

Climb

MaxClimb

D_1+F_U

3 000

 

 

 

A350-941

ICAO_A

M

4

Accelerate

MaxClimb

D_1+F_U

 

823,3

208,3

60

A350-941

ICAO_A

M

5

Accelerate

MaxClimb

D_1_U

 

886,5

218,4

60

A350-941

ICAO_A

M

6

Accelerate

MaxClimb

D_ZERO

 

963,5

232

60

A350-941

ICAO_A

M

7

Accelerate

MaxClimb

D_ZERO

 

1 036,9

250

60

A350-941

ICAO_A

M

8

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_B

1

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_B

1

2

Climb

MaxTakeoff

D_1+F_D

1 000

 

 

 

A350-941

ICAO_B

1

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 726,5

170,7

60

A350-941

ICAO_B

1

4

Accelerate

MaxTakeoff

D_1_U

 

1 862,6

197,2

60

A350-941

ICAO_B

1

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

ICAO_B

1

6

Accelerate

MaxClimb

D_ZERO

 

1 658

250

60

A350-941

ICAO_B

1

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_B

2

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_B

2

2

Climb

MaxTakeoff

D_1+F_D

1 000

 

 

 

A350-941

ICAO_B

2

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 699,9

173,1

60

A350-941

ICAO_B

2

4

Accelerate

MaxTakeoff

D_1_U

 

1 812,6

198,6

60

A350-941

ICAO_B

2

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

ICAO_B

2

6

Accelerate

MaxClimb

D_ZERO

 

1 604,5

250

60

A350-941

ICAO_B

2

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_B

3

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_B

3

2

Climb

MaxTakeoff

D_1+F_D

1 000

 

 

 

A350-941

ICAO_B

3

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 662,2

175,6

60

A350-941

ICAO_B

3

4

Accelerate

MaxTakeoff

D_1_U

 

1 762,3

200,1

60

A350-941

ICAO_B

3

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

ICAO_B

3

6

Accelerate

MaxClimb

D_ZERO

 

1 551,6

250

60

A350-941

ICAO_B

3

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_B

4

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_B

4

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

ICAO_B

4

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 586,1

179,9

60

A350-941

ICAO_B

4

4

Accelerate

MaxTakeoff

D_1_U

 

1 679,8

202,7

60

A350-941

ICAO_B

4

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

ICAO_B

4

6

Accelerate

MaxClimb

D_ZERO

 

1 465,3

250

60

A350-941

ICAO_B

4

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_B

5

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_B

5

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

ICAO_B

5

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 491,7

185,3

60

A350-941

ICAO_B

5

4

Accelerate

MaxTakeoff

D_1_U

 

1 586,9

206,4

60

A350-941

ICAO_B

5

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

ICAO_B

5

6

Accelerate

MaxClimb

D_ZERO

 

1 365,5

250

60

A350-941

ICAO_B

5

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_B

6

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_B

6

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

ICAO_B

6

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 399,5

191,1

60

A350-941

ICAO_B

6

4

Accelerate

MaxTakeoff

D_1_U

 

1 494,1

210,4

60

A350-941

ICAO_B

6

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

ICAO_B

6

6

Accelerate

MaxClimb

D_ZERO

 

1 268,2

250

60

A350-941

ICAO_B

6

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_B

7

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_B

7

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

ICAO_B

7

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 314

197

60

A350-941

ICAO_B

7

4

Accelerate

MaxTakeoff

D_1_U

 

1 407,1

214,7

60

A350-941

ICAO_B

7

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

ICAO_B

7

6

Accelerate

MaxClimb

D_ZERO

 

1 176,3

250

60

A350-941

ICAO_B

7

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_B

8

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_B

8

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

ICAO_B

8

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 233,3

203,4

60

A350-941

ICAO_B

8

4

Accelerate

MaxTakeoff

D_1_U

 

1 325,3

219,6

60

A350-941

ICAO_B

8

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

ICAO_B

8

6

Accelerate

MaxClimb

D_ZERO

 

1 089,2

250

60

A350-941

ICAO_B

8

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

A350-941

ICAO_B

M

1

Takeoff

MaxTakeoff

D_1+F_D

 

 

 

 

A350-941

ICAO_B

M

2

Climb

MaxTakeoff

D_1+F_U

1 000

 

 

 

A350-941

ICAO_B

M

3

Accelerate

MaxTakeoff

D_1+F_U

 

1 185,1

207,6

60

A350-941

ICAO_B

M

4

Accelerate

MaxTakeoff

D_1_U

 

1 275,6

222,9

60

A350-941

ICAO_B

M

5

Climb

MaxClimb

D_ZERO

3 000

 

 

 

A350-941

ICAO_B

M

6

Accelerate

MaxClimb

D_ZERO

 

1 036,7

250

60

A350-941

ICAO_B

M

7

Climb

MaxClimb

D_ZERO

10 000

 

 

 

ATR72

DEFAULT

1

1

Takeoff

MaxTakeoff

15

 

 

 

 

ATR72

DEFAULT

1

2

Climb

MaxTakeoff

15

1 000

 

 

 

ATR72

DEFAULT

1

3

Accelerate

MaxClimb

INTR

 

885

133,3

39,1

ATR72

DEFAULT

1

4

Accelerate

MaxClimb

ZERO

 

1 040

142,4

35,6

ATR72

DEFAULT

1

5

Climb

MaxClimb

ZERO

3 000

 

 

 

ATR72

DEFAULT

1

6

Accelerate

MaxClimb

ZERO

 

964

168,3

38,9

ATR72

DEFAULT

1

7

Climb

MaxClimb

ZERO

5 500

 

 

 

ATR72

DEFAULT

1

8

Climb

MaxClimb

ZERO

7 500

 

 

 

ATR72

DEFAULT

1

9

Climb

MaxClimb

ZERO

10 000

 

 

 

ATR72

DEFAULT

2

1

Takeoff

MaxTakeoff

15

 

 

 

 

ATR72

DEFAULT

2

2

Climb

MaxTakeoff

15

1 000

 

 

 

ATR72

DEFAULT

2

3

Accelerate

MaxClimb

INTR

 

900

138

31,7

ATR72

DEFAULT

2

4

Accelerate

MaxClimb

ZERO

 

995

147,3

32,2

ATR72

DEFAULT

2

5

Climb

MaxClimb

ZERO

3 000

 

 

 

ATR72

DEFAULT

2

6

Accelerate

MaxClimb

ZERO

 

962

168,3

32,1

ATR72

DEFAULT

2

7

Climb

MaxClimb

ZERO

5 500

 

 

 

ATR72

DEFAULT

2

8

Climb

MaxClimb

ZERO

7 500

 

 

 

ATR72

DEFAULT

2

9

Climb

MaxClimb

ZERO

10 000

 

 

 

ATR72

DEFAULT

3

1

Takeoff

MaxTakeoff

15

 

 

 

 

ATR72

DEFAULT

3

2

Climb

MaxTakeoff

15

1 000

 

 

 

ATR72

DEFAULT

3

3

Accelerate

MaxClimb

INTR

 

890

139,8

24,5

ATR72

DEFAULT

3

4

Accelerate

MaxClimb

ZERO

 

942

149,2

27,9

ATR72

DEFAULT

3

5

Climb

MaxClimb

ZERO

3 000

 

 

 

ATR72

DEFAULT

3

6

Accelerate

MaxClimb

ZERO

 

907

168,3

27,8

ATR72

DEFAULT

3

7

Climb

MaxClimb

ZERO

5 500

 

 

 

ATR72

DEFAULT

3

8

Climb

MaxClimb

ZERO

7 500

 

 

 

ATR72

DEFAULT

3

9

Climb

MaxClimb

ZERO

10 000 ’

 

 

 

(i)

in Table I-6, the following rows are added:

‘7378MAX

1

140 000

7378MAX

2

144 600

7378MAX

3

149 600

7378MAX

4

159 300

7378MAX

5

171 300

7378MAX

6

174 500

7378MAX

M

181 200

A350-941

1

421 680

A350-941

2

433 189

A350-941

3

445 270

A350-941

4

466 326

A350-941

5

493 412

A350-941

6

522 377

A350-941

7

552 871

A350-941

8

585 147

A350-941

M

606 271

ATR72

1

44 750

ATR72

2

47 620

ATR72

3

50 710 ’

(j)

in Table I-7, after the row

‘737800

MaxTkoffHiTemp

30 143,2

-29,773

-0,029

0

-145,2’

 

 

 

 

the following rows are added:

‘737800

IdleApproach

649,0

-3,3

0,0118

0

0

 

 

 

 

7378MAX

IdleApproach

1 046

-4,6

0,0147

0

0

 

 

 

 

7378MAX

MaxClimb

21 736

-28,6

0,3333

-3,28E-06

0

 

 

 

 

7378MAX

MaxClimbHiTemp

23 323

-15,1

-0,09821

6,40E-06

-142,0575

 

 

 

 

7378MAX

MaxTakeoff

26 375

-32,3

0,07827

8,81E-07

0

 

 

 

 

7378MAX

MaxTkoffHiTemp

30 839

-27,1

-0,06346

-8,23E-06

-183,1101

 

 

 

 

A350-941

IdleApproach

5 473,2

-24,305716

0,0631198

-4,21E-06

0

 

 

 

 

A350-941

IdleApproachHiTemp

5 473,2

-24,305716

0,0631198

-4,21E-06

0

 

 

 

 

A350-941

MaxClimb

67 210,9

-82,703367

1,18939

-0,000012074

0

 

 

 

 

A350-941

MaxClimbHiTemp

76 854,6

-75,672429

0

0

-466

 

 

 

 

A350-941

MaxTakeoff

84 912,8

-101,986997

0,940876

-8,31E-06

0

 

 

 

 

A350-941

MaxTkoffHiTemp

96 170,0

-101,339623

0

0

-394

 

 

 

 

ATR72

MaxClimb

5 635,2

-9,5

0,01127

0,00000027

0

 

 

 

 

ATR72

MaxTakeoff

7 583,5

-20,3

0,137399

-0,00000604

0’

 

 

 

 

(k)

in Table I-9, the following rows are added:

‘7378MAX

LAmax

A

3 000

90,4

83,4

78,7

73,8

65,9

57,1

50,7

43,6

36,5

29,7

7378MAX

LAmax

A

4 000

90,5

83,4

78,8

73,8

65,9

57,1

50,6

43,5

36,4

29,6

7378MAX

LAmax

A

5 000

90,7

83,7

79

74,1

66,1

57,2

50,7

43,6

36,5

29,6

7378MAX

LAmax

A

6 000

91

84

79,4

74,4

66,5

57,6

51

43,9

36,7

29,9

7378MAX

LAmax

A

7 000

91,5

84,4

79,8

74,8

66,9

58

51,5

44,3

37,1

30,2

7378MAX

LAmax

D

10 000

92,4

85,8

81,4

76,6

68,9

60,2

53,9

46,8

39,7

33

7378MAX

LAmax

D

13 000

94,2

87,7

83,2

78,4

70,7

62

55,6

48,5

41,4

34,6

7378MAX

LAmax

D

16 000

96

89,4

84,9

80,1

72,4

63,7

57,3

50,3

43,2

36,5

7378MAX

LAmax

D

19 000

97,6

91

86,5

81,8

74

65,3

59

52,1

45,1

38,4

7378MAX

LAmax

D

22 000

99,2

92,6

88,1

83,4

75,6

67

60,8

54

47,1

40,5

7378MAX

LAmax

D

24 500

100,6

94

89,5

84,8

77

68,5

62,4

55,7

48,9

42,5

7378MAX

SEL

A

3 000

92,6

88,4

85,6

82,4

77,2

70,9

66,1

60,8

55,4

50,2

7378MAX

SEL

A

4 000

92,7

88,6

85,8

82,6

77,3

71

66,2

60,9

55,5

50,4

7378MAX

SEL

A

5 000

93

88,9

86,1

82,9

77,6

71,3

66,5

61,1

55,7

50,6

7378MAX

SEL

A

6 000

93,3

89,3

86,4

83,2

77,9

71,6

66,8

61,4

56

50,8

7378MAX

SEL

A

7 000

93,7

89,6

86,8

83,6

78,3

72

67,1

61,8

56,3

51,1

7378MAX

SEL

D

10 000

94,3

90,4

87,6

84,5

79,1

72,9

68,3

63,2

58

53,1

7378MAX

SEL

D

13 000

96,1

92,2

89,4

86,3

80,8

74,5

69,9

64,8

59,6

54,8

7378MAX

SEL

D

16 000

97,6

93,7

90,9

87,8

82,5

76,3

71,7

66,7

61,6

56,9

7378MAX

SEL

D

19 000

98,8

95

92,3

89,3

84

78

73,6

68,7

63,8

59,1

7378MAX

SEL

D

22 000

100

96,2

93,6

90,6

85,6

79,8

75,5

70,8

66,1

61,7

7378MAX

SEL

D

24 500

100,9

97,2

94,6

91,7

86,9

81,4

77,4

72,8

68,3

64,1

A350-941

LAmax

A

1 000

91,21

84,42

79,83

74,97

67,15

58,68

52,65

46,06

38,92

31,73

A350-941

LAmax

A

10 000

92,16

85,43

80,83

75,99

68,31

59,92

53,97

47,34

40,08

32,68

A350-941

LAmax

A

17 000

94,76

87,92

83,18

78,16

70,23

61,75

55,72

49,06

41,55

33,91

A350-941

LAmax

D

25 000

92,83

85,22

80,6

75,75

68,22

60

54,03

47,27

39,73

31,65

A350-941

LAmax

D

35 000

95,16

88,13

83,33

78,27

70,38

61,9

55,87

49,15

41,66

33,82

A350-941

LAmax

D

50 000

99,67

92,61

87,75

82,5

74,45

66,01

60

53,34

45,7

37,42

A350-941

LAmax

D

70 000

103,74

96,78

91,98

86,87

78,8

70,01

63,7

56,71

48,8

40,63

A350-941

SEL

A

1 000

94,18

89,98

86,96

83,74

78,42

72,25

67,64

62,45

56,7

50,92

A350-941

SEL

A

10 000

95,52

91,32

88,29

85,06

79,78

73,75

69,24

64,17

58,36

52,34

A350-941

SEL

A

17 000

97,74

93,39

90,3

87,01

81,68

75,62

71,18

66,09

60,23

54

A350-941

SEL

D

25 000

95,67

90,95

87,67

84,23

78,73

72,73

68,33

63,24

57,19

50,52

A350-941

SEL

D

35 000

97,28

92,81

89,7

86,39

81,04

75,18

70,92

65,83

59,85

53,36

A350-941

SEL

D

50 000

100,98

96,76

93,79

90,43

85,11

79,2

74,81

69,77

63,84

57,37

A350-941

SEL

D

70 000

104,66

100,74

97,82

94,68

89,49

83,56

79,09

73,94

67,84

61,27

ATR72

LAmax

A

890

86,6

79,4

74,4

69,2

61,1

52,5

46,6

40

32,7

25

ATR72

LAmax

A

900

86,6

79,4

74,4

69,2

61,1

52,5

46,6

40

32,7

25

ATR72

LAmax

A

1 250

86,7

79,5

74,5

69,3

61,2

52,6

46,6

40

32,6

24,8

ATR72

LAmax

A

1 600

87,5

80,2

75,1

69,9

61,9

53,4

47,4

40,8

33,4

25,7

ATR72

LAmax

D

3 000

87,7

81,1

76,7

71,9

64,4

56,7

50,9

44,1

37,2

29,9

ATR72

LAmax

D

3 600

89,4

82,8

78,6

73,9

66,3

58

52,2

45,5

38,8

31,5

ATR72

LAmax

D

4 200

91,1

84,5

80,6

75,9

68,2

59,8

53,9

47,1

40,2

32,9

ATR72

LAmax

D

4 800

92,8

86,3

82,5

77,9

70,1

62,1

56

48,8

41,5

33,8

ATR72

LAmax

D

4 900

94,6

88,2

84

79,7

72,9

65,7

60,8

55,3

50

43,9

ATR72

LAmax

D

5 300

95,7

89,5

85,2

81

74,3

67,3

62,4

57

51,7

45,6

ATR72

LAmax

D

5 310

95,7

89,5

85,2

81

74,3

67,3

62,4

57

51,7

45,6

ATR72

SEL

A

890

89,7

85

81,7

78,2

72,8

66,9

62,6

57,7

52,1

45,9

ATR72

SEL

A

900

89,7

85

81,7

78,2

72,8

66,9

62,6

57,7

52,1

45,9

ATR72

SEL

A

1 250

89,4

84,7

81,5

78,1

72,8

66,8

62,5

57,6

51,8

45,6

ATR72

SEL

A

1 600

89,7

85,1

81,8

78,4

73,1

67,3

63

58,1

52,4

46,2

ATR72

SEL

D

3 000

88,9

84,8

82

79

74,3

68,9

64,9

60

54,6

48,6

ATR72

SEL

D

3 600

90

85,9

83,2

80,3

75,5

70,3

66,4

61,6

56,4

50,5

ATR72

SEL

D

4 200

91,1

87,1

84,4

81,6

77

71,9

67,9

63

57,8

51,9

ATR72

SEL

D

4 800

92,2

88,2

85,6

82,9

78,8

73,8

69,6

64,4

58,8

52,7

ATR72

SEL

D

4 900

92,9

89,4

86,9

84,3

80,3

75,9

72,9

69,3

65,5

61,3

ATR72

SEL

D

5 300

93,7

90,2

87,7

85,2

81,4

77,1

74,1

70,6

66,8

62,6

ATR72

SEL

D

5 310

93,7

90,2

87,7

85,2

81,4

77,1

74,1

70,6

66,8

62,6’

(l)

in Table I-10, the following rows are inserted after the row corresponding to ‘Spectral Class ID’ number 138:

‘139

Departure

2-Engine.HighByPass.Tfan

71,4

67,4

59,1

69,3

75,3

76,7

72,6

69,3

76,4

71,2

71,8

140

Departure

2-Engine.Tprop

63,5

62,8

71,0

87,4

78,5

76,8

74,6

77,4

79,8

74,3

75,4’

(m)

in Table I-10, the following rows are added:

‘239

Approach

2-Engine.HighByPass.Tfan

71,0

65,0

60,7

70,7

74,8

76,5

73,2

71,8

75,9

73,0

71,1

240

Approach

2-Engine.Tprop

65,9

68,0

66,9

80,0

77,1

78,5

73,9

75,6

77,7

73,6

73,3’


(*)  For this purpose the total length of the ground track should always exceed that of the flight profile. This can be achieved, if necessary, by adding straight segments of suitable length to the last segment of the ground track.

(**)  Even if engine power settings remain constant along a segment, propulsive force and acceleration can change due to variation of air density with height. However, for the purposes of noise modelling these changes are normally negligible.

(***)  This was recommended in the previous edition of ECAC Doc 29 but is still considered provisional pending the acquisition of further corroborative experimental data.

(****)  Defined in this simple way, the total length of the segmented path is slightly less than that of the circular path. However the consequent contour error is negligible if the angular increments are below 30°.’.

(*)  Although the notion of an infinitely long flight path is important to the definition of event sound exposure level LE , it has less relevance in the case of event maximum level Lmax which is governed by the noise emitted by the aircraft when at a particular position at or near its closest point of approach to the observer. For modelling purposes the NPD distance parameter is taken to be the minimum distance between the observer and segment.’.

(*)  This is known as the duration correction because it makes allowance for the effects of aircraft speed on the duration of the sound event – implementing the simple assumption that, other things being equal, duration, and thus received event sound energy, is inversely proportional to source velocity.’;

(*)  The medium value is the value separating the higher half (50 %) from the lower half (50 %) of a data set.

(**)  The lower half of the data asset may be assimilated with the presence of relatively calm façades. In case it is known in advance, e.g. based on the location of buildings relative to the dominant noise sources, which receiver locations will give way to the highest / lowest noise levels, there is no need to calculate noise for the lower half.’.’


Top